Skip to main content
Log in

Quantum fast Poisson solver: the algorithm and complete and modular circuit design

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The Poisson equation has applications across many areas of physics and engineering, such as the dynamic process simulation of ocean current. Here we present a quantum algorithm for solving Poisson equation, as well as a complete and modular circuit design. The algorithm takes the HHL algorithm as the framework (where HHL is for solving linear equations). A more efficient way of implementing the controlled rotation, one of the crucial steps in HHL, is developed based on the arc cotangent function. The key point is that the inverse trigonometric function can be evaluated in a very simple recursive way by a binary expansion method. Quantum algorithms for solving square root and reciprocal functions are proposed based on the classical non-restoring method. These advances not only reduce the algorithm’s complexity, but more importantly make the circuit more complete and practical. We demonstrate our circuits on a quantum virtual computing system installed on the Sunway TaihuLight supercomputer. This is an important step toward practical applications of the present circuits as a fast Poisson solver in the near-term hybrid classical/quantum devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Cleve, R., Ekert, A., Macchiavello, C., Mosca, M.: Quantum algorithms revisited. Proc. R. Soc. Lond. A 454, 339–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Chaps. 1–6. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings 35th Annual Symposium on Foundations of Computer Science, pp. 124–134 (1994)

  4. Grover, L.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325–328 (1997)

    Article  ADS  Google Scholar 

  5. Harrow, A.W., Hassidim, A., Lloyd, S.: Quantum algorithm for linear systems of equations. Phys. Rev. Lett. 103, 150502 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Biamonte, J., Wittek, P., Pancotti, N., Rebentrost, P., Wiebe, N., Lloyd, S.: Quantum machine learning. Nature 549, 195–202 (2017)

    Article  ADS  Google Scholar 

  7. Leyton, S.K., Osborne, T.J.: A quantum algorithm to solve nonlinear differential equations (2008). arXiv:0812.4423

  8. Berry, W.: High-order quantum algorithm for solving linear differential equations. J. Phys. A Math. Theor. 47, 105301 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  9. Berry, W., Childs, A.M., Ostrander, A., Wang, G.: Quantum algorithm for linear differential equations with exponentially improved dependence on precision. Commun. Math. Phys. 356, 1057–1081 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  10. Arrazola, J.M., Kalajdzievski, T., Weedbrook, C., Lloyd, S.: Quantum algorithm for non-homogeneous linear partial differential equations. Phys. Rev. A 100, 032306 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  11. Cao, Y., Papageorgiou, A., Petras, I., Traub, J., Kais, S.: Quantum algorithm and circuit design solving the Poisson equation. New J. Phys. 15, 013021 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. White, F.M.: Fluid Mechanics, Chap. 4, 8th edn. McGraw-Hill Education, New York (2016)

    Google Scholar 

  13. Lukaszewicz, G., Kalita, P.: Navier–Stokes Equations: An Introduction with Applications, Chap. 2. Springer, Switzerland (2016)

    Book  Google Scholar 

  14. Kosior, A., Kudela, H.: Parallel computations on GPU in 3D using the vortex particle method. Comput. Fluids 80, 423–428 (2013)

    Article  MathSciNet  Google Scholar 

  15. Steijl, R., Barakos, G.N.: Parallel evaluation of quantum algorithms for computational fluid dynamics. Comput. Fluids 173, 22–28 (2018)

    Article  MathSciNet  Google Scholar 

  16. Hockney, R.W.: A fast direct solution of Poisson’s equation using Fourier analysis. J. Assoc. Comput. Mach. 12, 95–113 (1965)

    Article  MathSciNet  Google Scholar 

  17. Buzbee, B.L., Golub, G.H., Nielson, C.W.: On direct methods for solving Poisson’s equations. SIAM J. Numer. Anal. 7, 627–656 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  18. Swarztrauber, P.N.: The methods of cyclic reduction, Fourier analysis and the FACR algorithm for the discrete solution of Poisson’s equation on a rectangle. SIAM Rev. 19, 490–501 (1977)

    Article  MathSciNet  Google Scholar 

  19. Ritter, K., Wasilkowski, G.W.: On the average case complexity of solving Poisson equations. Lect. Appl. Math. 32, 677–688 (1996)

    MathSciNet  MATH  Google Scholar 

  20. Childs, A.M., Liu, J.-P.: Quantum spectral methods for differential equations (2019). arXiv:1901.00961

  21. Childs, A.M., Kothari, R., Somma, R.D.: Quantum algorithm for systems of linear equations with exponentially improved dependence on precision. SIAM J. Comput. 46, 1920–1950 (2017)

    Article  MathSciNet  Google Scholar 

  22. Borwein, J.M., Girgensohn, R.: Addition theorems and binary expansions. Can. J. Math. 47, 262–273 (1995)

    Article  MathSciNet  Google Scholar 

  23. Freiman, C.V.: Statistical analysis of certain binary division algorithms. Proc. IRE 49, 91–103 (1961)

    Article  MathSciNet  Google Scholar 

  24. Sutikno, T.: An efficient implementation of the non restoring square root algorithm in gate level. Int. J. Comput. Theory Eng. 3, 46 (2011)

    Article  Google Scholar 

  25. Burks, A.W., Goldstine, H.H., von Neumann, J.: Preliminary discussion of the logical design of an electronic computing instrument. Princeton, Institute for Advanced Study (1947)

    Google Scholar 

  26. Demmel, J.W.: Applied Numerical Linear Algebra, Chap. 6. SIAM, Philadelphia (1997)

    Book  Google Scholar 

  27. Aaronson, S.: Read the fine print. Nat. Phys. 11, 291–293 (2015)

    Article  Google Scholar 

  28. Biham, O., Biron, D., Grassl, M., Lidar, D.A.: Grover’s quantum search algorithm for an arbitrary initial amplitude distribution. Phys. Rev. A 60, 2742 (1999)

    Article  ADS  Google Scholar 

  29. Grover, L.K.: Synthesis of quantum superpositions by quantum computation. Phys. Rev. Lett. 85, 1334 (2000)

    Article  ADS  Google Scholar 

  30. Grover, L., Rudolph, T.: Creating superpositions that correspond to efficiently integrable probability distributions (2002). arXiv:quant-ph/0208112

  31. Soklakov, A.N., Schack, R.: Efficient state preparation for a register of quantum bits. Phys. Rev. A 73, 012307 (2006)

    Article  ADS  Google Scholar 

  32. Luis, A., Peřina, J.: Optimum phase-shift estimation and the quantum description of the phase difference. Phys. Rev. A 54, 4564 (1996)

    Article  ADS  Google Scholar 

  33. Weinstein, Y.S., Pravia, M.A., Fortunato, E.M., Lloyd, S., Cory, D.G.: Implementation of the quantum Fourier transform. Phys. Rev. Lett. 86, 1889 (2001)

    Article  ADS  Google Scholar 

  34. Lloyd, S.: Universal quantum simulators. Science 273, 1073–1078 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  35. Berry, D.W., Ahokas, G., Cleve, R., Sanders, B.C.: Efficient quantum algorithms for simulating sparse Hamiltonians. Commun. Math. Phys. 270, 359–371 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  36. Wickerhauser, M.V.: Adapted Wavelet Analysis: From Theory to Software, Chap. 3. Peters A.K./CRC Press, Wellesley (1994)

    MATH  Google Scholar 

  37. Klappenecker, A., Rotteler, M.: Discrete cosine transforms on quantum computers (2001). arXiv:quant-ph/0111038

  38. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., Sleator, T., Smolin, J.A., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52, 3457 (1995)

    Article  ADS  Google Scholar 

  39. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54, 147 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  40. Bhaskar, M.K., Hadfield, S., Papageorgiou, A., Petras, I.: Quantum algorithms and circuits for scientific computing. Quantum Inf. Comput. 16, 197–236 (2016)

    MathSciNet  Google Scholar 

  41. Brassard, G., Hoyer, P., Mosca, M., Tapp, A.: Quantum amplitude amplification and estimation. Contemp. Math. 305, 53–74 (2002)

    Article  MathSciNet  Google Scholar 

  42. Zhao-Yun, Chen, Qi, Zhou, Cheng, Xue, Xia, Yang, Guang-Can, Guo, Guo-Ping, Guo: 64-qubit quantum circuit simulation. Sci. Bull. 63, 964–971 (2018)

    Article  Google Scholar 

  43. The web address for accessing our QRunes codes

  44. User manual of QRunes. https://github.com/OriginQ/QPanda/tree/master/QRunes

  45. Mitarai, K., Kitagawa, M., Fujii, K.: Quantum analog-digital conversion. Phys. Rev. A 99, 012301 (2019)

    Article  ADS  Google Scholar 

  46. Häner, T., Roetteler, M., Svore, K.M: Optimizing quantum circuits for arithmetic (2018). arXiv:1805.12445

  47. Pan, V.Y., Ivolgin, D., Murphy, B., Rosholt, R.E., Tang, Y., Yan, X.: Additive preconditioning for matrix computations. Linear Algebra Appl. 432, 1070–1089 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We are very grateful to the National Supercomputing Center in Wuxi for the great computing resource. We would also like to thank the technical team from the Origin Quantum Computing Technology Co., Ltd, in Hefei for the professional services on quantum virtual computation. The present work is financially supported by the National Natural Science Foundation of China (Grant Nos. 61575180, 61701464, 11475160) and the Pilot National Laboratory for Marine Science and Technology (Qingdao).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhimin Wang or Yongjian Gu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Appendices

Appendix 1

We take the maximum eigenvalue as the norm of the discretized matrix A. The norm of matrix A is \( \lambda_{\hbox{max} } = 4N^{2} \sin^{2} \frac{(N - 1)\pi }{2N} \) as shown in Sect. 2 and that of matrix A−1 is \( \lambda^{\prime}_{\hbox{max} } = (4N^{2} \sin^{2} \frac{\pi }{2N})^{ - 1} \). So the condition number of matrix A, or the ratio between A’s largest and smallest eigenvalues [5], can be obtained as follows:

$$ \kappa = \left\| A \right\| \cdot \left\| {A^{ - 1} } \right\| = \lambda_{\hbox{max} } \cdot \lambda^{\prime}_{\hbox{max} } = \cot^{2} \frac{1}{2N}\pi . $$
(A.1)

The relationship between κ and N is apparently nonlinear. Assuming \( x = {\pi \mathord{\left/ {\vphantom {\pi {2N}}} \right. \kern-0pt} {2N}} < 1 \), the squared cotangent function satisfies the following equalities,

$$ \begin{aligned} \cot^{2} \frac{1}{2N}\pi & = \cot^{2} x = \left( {i\frac{{{\text{e}}^{ix} + {\text{e}}^{ - ix} }}{{{\text{e}}^{ix} - {\text{e}}^{ - ix} }}} \right)^{2} \\ & = \frac{1}{{x^{2} }} - 1 + o(x^{3} ) < \frac{{N^{2} }}{2} - 1 + o\left( {\left( {\frac{\pi }{2N}} \right)^{3} } \right), \\ \end{aligned} $$
(A.2)

where Taylor expansions of \( {\text{e}}^{ix} \) and \( {\text{e}}^{ - ix} \) are used. The condition number of matrix A is \( \kappa = O(N^{2} ) \). In addition, we have the relationship between N and the basic error of the solutions caused by the central-difference approximation, namely \( N = \varepsilon^{ - \alpha } \). The α is a smoothness parameter depending on the smoothness of the solution function. (For example, when the solution function has uniformly bounded partial derivatives up to order four, α is 1/2 [26].) Therefore, the condition number of matrix A can be further expressed as \( \kappa = O(N^{2} ) = O(\varepsilon^{ - 2\alpha } ) \), which is independent of the dimension of matrix A. The additive preconditioner [47] would be used to reduce the κ.

Appendix 2

2.1 Non-restoring method for solving the square root function

The calculation procedure consists of the following five steps.

  1. 1st.

    Ignore the binary point of the binary number and expand the m-bits binary string to be 2m-bits by adding 0 on the right-hand side.

  2. 2nd.

    Divide the 2m-bits string into m parts in pairs from upper bit to lower.

  3. 3rd.

    Subtract 01 from the most left part. If the subtraction result is nonnegative, then the first bit of the solution is 1 and proceed to the next step. Otherwise, first bit of the solution is 0 and undo the subtraction operation.

  4. 4th.

    Expand the subtraction result of the last step by combining it with the next 2-bit part, and combine the solution obtained in the last step with 01. Then subtract the second number from the first number. If the subtraction result is nonnegative, the next bit of the solution is 1 and proceed to the next step. Otherwise, the next bit is 0 and undo the subtraction operation.

  5. 5th.

    Repeat step 4m − 1 times and the m-bits of the solution are obtained.

We take the square root of 01.002 as the example to illustrate the calculation procedure as shown in Fig. 15.

Fig. 15
figure 15

Demo case of calculating square root of 01.002 using our revised non-restoring square root method

2.2 Non-restoring method for solving the reciprocal function

The calculation procedure consists of the following three steps.

  1. 1st.

    The highest bit of dividend 1 is the sign bit. Subtract the divisor from the dividend. If the sign bit of the result is 0, the first bit of reciprocal is 1, otherwise the first bit is 0. Then the result shifts left one bit except the sign bit with zero padding to the end to obtain the second dividend.

  2. 2nd.

    If the sign bit of the dividend of the last step is 0, subtract the divisor. If the sign bit is 1, add the divisor. If the sign bit of the result is 0, the next bit of reciprocal is 1, otherwise the next bit is 0. Then the result shifts left one bit except the sign bit with zero padding to the end to obtain the next dividend.

  3. 3rd.

    Repeat step 2m − 1 times and the m-bits of reciprocal of the divisor are obtained.

The reciprocal of 10002 is taken as the example as described in Fig. 16.

Fig. 16
figure 16

Demo case of calculating reciprocal of 10002 using the non-restoring method

Appendix 3

3.1 Error accumulation in the iteration process of EVC module

As shown in Fig. 6, the EVC module is first initialized with q qubits to perform the intermediate iterative calculations and finally truncated to m qubits to store the approximated eigenvalues. There exists truncation error in each iteration which will be accumulated to the final result. So appropriate q should be selected to guarantee that all the m-bits of the output are exact.

According to the characteristics of the iterative formula as shown in Eq. (12), the maximum error accumulation occurs at the points of |cos(1/2 ± 1/2n)π|. We take one of them, namely \( {j \mathord{\left/ {\vphantom {j N}} \right. \kern-0pt} N} = (0.0\mathop {\underline{11 \cdots 1} }\limits_{n - 1} )_{2} \), to evaluate the upper bound of the truncation error. Firstly, Eq. (12) can be expressed as

$$ y(x) = \left\{ {\begin{array}{*{20}c} {\sqrt {(1 + x)/2} ,\,\,if \, \,\,v_{i} = v_{i - 1} \;\;} \\ {\sqrt {(1 - x)/2} ,\,\,if\,\,\, \, v_{i} \ne v_{i - 1} } \\ \end{array} } \right.,x \in [0,1],y \in [0,1]. $$
(C.1.1)

The derivative of the first iteration function is decreasing and belongs to the interval of \( [{1 \mathord{\left/ {\vphantom {1 4}} \right. \kern-0pt} 4},{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 4}} \right. \kern-0pt} 4}] \), while the second is also decreasing and belongs to the interval of \( [{{ - \sqrt 2 } \mathord{\left/ {\vphantom {{ - \sqrt 2 } 4}} \right. \kern-0pt} 4}, - \infty ) \). The iteration process is as follows:

$$ \left\{ \begin{aligned} &a_{1} = y(a_{0} ) + 0 \hfill \\ &\hat{a}_{2} = y(a_{1} ) + \varepsilon_{2} \hfill \\ &\hat{a}_{3} = y(\hat{a}_{2} ) + \varepsilon_{3} \hfill \\ &\cdots \hfill \\ &\hat{a}_{n} = y(\hat{a}_{n - 1} ) + \varepsilon_{n} \hfill \\ \end{aligned} \right., $$
(C.1.2)

where εi represents the truncation error of each iteration step. The error of the first step is always zero. For \( {j \mathord{\left/ {\vphantom {j N}} \right. \kern-0pt} N} = (0.011 \cdots 1)_{2} \), the next n − 2 steps satisfy vi= vi − 1, so the function of \( \sqrt {(1 + x)/2} \) is calculated; the last step calculates \( \sqrt {(1 - x)/2} \). Using the fact that the derivative of \( \sqrt {(1 + x)/2} \) is no larger than \( {{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 4}} \right. \kern-0pt} 4} \), the error accumulation can be expressed as

$$ \begin{aligned} |a_{n} - \hat{a}_{n} | & = |y(a_{n - 1} ) - y(\hat{a}_{n - 1} ) - \varepsilon_{n} | \\ & < \delta |a_{n - 1} - \hat{a}_{n - 1} | + |\varepsilon_{n} | \\ & < \frac{\sqrt 2 }{4}\delta |a_{n - 2} - \hat{a}_{n - 2} | + \delta |\varepsilon_{n - 1} | + |\varepsilon_{n} | \\ & \cdots \, \\ & < \delta \left( {\left( {\frac{\sqrt 2 }{4}} \right)^{n - 3} |\varepsilon_{2} | + \cdots + \frac{\sqrt 2 }{4}|\varepsilon_{n - 2} | + |\varepsilon_{n - 1} |} \right) + |\varepsilon_{n} | \\ & < [4\delta + 1]2^{ - q} , \\ \end{aligned} $$
(C.1.3)

where δ is the derivative of \( \sqrt {(1 - x)/2} \) satisfying \( \delta = |y^{\prime}_{n} | \in [{{\sqrt 2 } \mathord{\left/ {\vphantom {{\sqrt 2 } 4}} \right. \kern-0pt} 4},\infty ) \).

Now we need to evaluate the upper bound of δ. First we have the relation of cosx < 1 − x2/4 when \( x \in (0,1) \). Then the output of the (n − 1)th iteration satisfies

$$ \hat{a}_{n - 1} < a_{n - 1} = \cos \frac{\pi }{{2^{n - 1} }} < 1 - \frac{1}{4}\left( {\frac{\pi }{{2^{n - 1} }}} \right)^{2} < 1 - 2^{ - 2n + 3} . $$
(C.1.4)

So the absolute value of the derivative at the nth iteration could be calculated,

$$ |y^{\prime}_{n} | = \frac{1}{\sqrt 2 }\frac{1}{{\sqrt {1 - \hat{a}_{n - 1} } }} < \frac{1}{\sqrt 2 }\frac{1}{{\sqrt {2^{ - 2n + 3} } }} = \frac{1}{{\sqrt {2^{ - 2n + 4} } }} = 2^{n - 2} . $$
(C.1.5)

Substitute the result in Eq. (C.1.3) and we obtain

$$ |a_{n} - \hat{a}_{n} | < [4 \cdot 2^{n - 2} + 1]2^{ - q} = (2^{n} + 1)2^{ - q} . $$
(C.1.6)

This is the error for |cos(/N)|. We finally truncate the result of 2N2(1 − cos(/N)) into m qubits, and m = 2n + 2+f (note that the n here represents the same parameter as that in, say Eq. (C.1.2)), where the 2n + 2 bits hold the integer part and the f bits hold the fractional part. In order to guarantee that all the m-bits of the output are totally exact, the q should satisfy the following inequality,

$$ q \ge m + n. $$
(C.1.7)

Without loss of generality, we would assume that f = 2n + 2, so in such case q = 5m/4 is adequate to make the high m-bits output being exact in theory.

3.2 The error in controlled rotation

According to Eq. (13), the probability amplitude of the quantum state after controlled rotation should be

$$ \sin \theta_{j} = \frac{1}{{\sqrt {1 + \cot^{2} \theta_{j} } }} = \frac{1}{{\hat{\lambda }_{j} }},\theta_{j} \in (0,\pi /2). $$
(C.2.1)

Substituting Eq. (14) in Eq. (C.2.1), then it turns to

$$ \sin \theta^{\prime}_{j} = \frac{1}{{\sqrt {1 + \hat{\lambda }_{j}^{2} } }},\theta^{\prime}_{j} \in (0,\pi /2). $$
(C.2.2)

Based on Eq. (14), we know that \( {1 \mathord{\left/ {\vphantom {1 {\tilde{\lambda }_{j} }}} \right. \kern-0pt} {\tilde{\lambda }_{j} }} = {1 \mathord{\left/ {\vphantom {1 {\sqrt {1 + \hat{\lambda }_{j}^{2} } }}} \right. \kern-0pt} {\sqrt {1 + \hat{\lambda }_{j}^{2} } }} \). So the error is

$$ \begin{aligned} \varepsilon_{2} (0) & = |\sin \theta^{\prime}_{j} - \sin \theta_{j} |= \left| {\frac{1}{{\sqrt {1 + \hat{\lambda }_{j}^{2} } }} - \frac{1}{{\hat{\lambda }_{j} }}} \right| \\ & \le \left| {\frac{1}{{\sqrt {1 + \hat{\lambda }_{\hbox{min} }^{2} } }} - \frac{1}{{\hat{\lambda }_{\hbox{min} } }}} \right|{ = }\left| {\frac{1}{{\sqrt {1 + 8^{2} } }} - \frac{1}{8}} \right| < 2^{ - 10} . \\ \end{aligned} $$
(C.2.3)

We can reduce error by amplifying the approximated eigenvalues, i.e., shift the binary numeral of \( \hat{\lambda }_{j} \) left, say, i bits. Now the error turns to

$$ \begin{aligned} \varepsilon_{2} (i) & = \left| {\frac{1}{{\tilde{\lambda }_{j} }} - \frac{1}{{\hat{\lambda }_{j} }}} \right| = \left| {\frac{1}{{\sqrt {2^{ - 2i} + \hat{\lambda }_{j}^{2} } }} - \frac{1}{{\hat{\lambda }_{j} }}} \right| \le \left| {\frac{1}{{\sqrt {2^{ - 2i} + 8^{2} } }} - \frac{1}{8}} \right| \\ & = 2^{ - 3} \left( {2^{0} - \frac{1}{{\sqrt {2^{0} + 2^{ - 2i - 6} } }}} \right)\mathop < \limits_{NR} 2^{ - 3} \left( {2^{0} - \frac{1}{{2^{0} + 2^{ - 2i - 7} }}} \right) \\ & \mathop = \limits_{NR} 2^{ - 3} \left( {2^{0} - \sum\nolimits_{j = 1}^{i} {2^{ - 2j - 7} } } \right) = 2^{ - 2i - 10} , \\ \end{aligned} $$
(C.2.4)

where NR means the operation is calculated by non-restoring method. So the upper bound of error \( \varepsilon_{2} (i) \) reduces exponentially with i. Shifting left one bit makes the error reduce about 22 times. And the state after controlled rotation turns to \( \sqrt {1 - \left( {{{C^{\prime}} \mathord{\left/ {\vphantom {{C^{\prime}} {2^{i} \tilde{\lambda }_{j} }}} \right. \kern-0pt} {2^{i} \tilde{\lambda }_{j} }}} \right)^{2} } |0\rangle + {{C^{\prime}} \mathord{\left/ {\vphantom {{C^{\prime}} {2^{i} \tilde{\lambda }_{j} }}} \right. \kern-0pt} {2^{i} \tilde{\lambda }_{j} }} |1\rangle \), where \( C^{\prime} \) represents the normalizing constant. Factor \( {1 \mathord{\left/ {\vphantom {1 {2^{i} }}} \right. \kern-0pt} {2^{i} }} \) will be contained in the normalizing constant.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Wang, Z., Li, W. et al. Quantum fast Poisson solver: the algorithm and complete and modular circuit design. Quantum Inf Process 19, 170 (2020). https://doi.org/10.1007/s11128-020-02669-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-020-02669-7

Keywords

Navigation