Skip to main content
Log in

Preservation of entanglement and quantum correlations next to periodic plasmonic nanostructures

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study quantum correlations dynamics of two identical V-type quantum systems initially prepared in an extended Werner-like state, where each one independently interacts with a plasmonic nanostructure. Each V-type system can be decomposed as a two-level system with an additional third external level acting as an “umbrella level.” As the plasmonic nanostructure, we use a two-dimensional array of metal-coated dielectric nanoparticles. For the calculations, we combine quantum dynamics calculations using the density matrix equations and classical electromagnetic calculations. In order to describe the entanglement, we use the measure of entanglement of formation, while we use quantum discord to describe the total quantum correlations of our composite system. We find that the presence of the plasmonic nanostructure leads to high suppression of spontaneous emission rates along with a high degree of quantum interference. These phenomena affect the evolution of both entanglement and quantum discord, while they significantly prolong their dynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  4. Yu, T., Eberly, J.H.: Finite-time disentanglement via spontaneous emission. Phys. Rev. Lett. 93, 140404 (2004)

    ADS  Google Scholar 

  5. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 323, 598 (2009)

    ADS  MathSciNet  MATH  Google Scholar 

  6. Franco, R.Lo, Bellomo, B., Maniscalco, S., Compagno, G.: Dynamics of quantum correlations in two-qubit systems within non-Markovian environments. Int. J. Mod. Phys. B 27, 1345053 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Horodecki, M., Horodecki, P., Horodecki, R.M., Oppenheim, J., Sen(De), A., Sen, U., Synak-Radtke, B.: Local versus nonlocal information in quantum-information theory: formalism and phenomena. Phys. Rev. A 71, 062307 (2005)

    ADS  MATH  Google Scholar 

  8. Bennett, C.H., DiVincenzo, D.P., Fuchs, C.A., Mor, T., Rains, E., Shor, P.W., Smolin, J.A., Wootters, W.K.: Quantum nonlocality without entanglement. Phys. Rev. A 59, 1070 (1999)

    ADS  MathSciNet  Google Scholar 

  9. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    ADS  MATH  Google Scholar 

  10. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  11. Wang, B., Xu, Zhen-Yu., Chen, Ze-Qian, Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    ADS  Google Scholar 

  12. Fanchini, F.F., Werlang, T., Brasil, C.A., Arruda, L.G.E., Caldeira, A.O.: Non-Markovian dynamics of quantum discord. Phys. Rev. A 81, 052107 (2010)

    ADS  Google Scholar 

  13. Zhang, P., You, B., Cen, L.-X.: Long-lived quantum coherence of two-level spontaneous emission models within structured environments. Optics Lett. 38, 3650 (2013)

    ADS  Google Scholar 

  14. Wang, J., Zhang, H., Zhang, Y., Zhang, L., Huang, T., Sun, S., Zhang, H.-Z.: Dynamics of quantum discord in photonic crystals. Opt. Commun. 285, 2961 (2012)

    ADS  Google Scholar 

  15. Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Two-qubit correlations via a periodic plasmonic nanostructure. Ann. Phys. 365, 38 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin- Moreno, L., Tejedor, C., Garcia-Vidal, F.J.: Entanglement of two qubits mediated by one-dimensional plasmonic waveguides. Phys. Rev. Lett. 106, 020501 (2011)

    ADS  Google Scholar 

  17. Martin-Cano, D., Gonzalez-Tudela, A., Martin-Moreno, L., Garcia-Vidal, F.J., Tejedor, C., Moreno, E.: Dissipation-driven generation of two-qubit entanglement mediated by plasmonic waveguides. Phys. Rev. B 84, 235306 (2011)

    ADS  Google Scholar 

  18. Xu, J., Al-Amri, M., Yang, Y., Zhu, S.-Y., Zubairy, M.S.: Entanglement generation between two atoms via surface modes. Phys. Rev. A 84, 032334 (2011)

    ADS  Google Scholar 

  19. He, Y., Zhu, K.-D.: Strong coupling among semiconductor quantum dots induced by a metal nanoparticle. Nanosc. Res. Lett. 7, 95 (2012)

    ADS  Google Scholar 

  20. Gonzalez-Tudela, A., Martin-Cano, D., Moreno, E., Martin-Moreno, L., Garcia-Vidal, F.J., Tejedor, C.: Exploring qubit-qubit entanglement mediated by one-dimensional plasmonic nanowaveguides. Phys. Stat. Solidi C 9, 1303 (2012)

    Google Scholar 

  21. Susa, C.E., Reina, J.H., Sanchez-Soto, L.L.: Correlations in emitters coupled to plasmonic waveguides. J. Phys. B: At. Mol. Opt. Phys. 46, 224022 (2013)

    ADS  Google Scholar 

  22. He, Q.-L., Xu, J.-B., Yao, D.-X.: Mediating and inducing quantum correlation between two separated qubits by one-dimensional plasmonic waveguide. Quant. Inf. Proc. 12, 3023 (2013)

    MathSciNet  MATH  Google Scholar 

  23. Liu, S.-P., Li, J.-H., Yu, R., Wu, Y.: Generation of long-time maximum entanglement between two dipole emitters via a hybrid photonic-plasmonic resonator. Phys. Rev. A 87, 042306 (2013)

    ADS  Google Scholar 

  24. Lee, C., Tame, M., Noh, C., Lim, J., Maier, S.A., Lee, J., Angelakis, D.G.: Robust-to-loss entanglement generation using a quantum plasmonic nanoparticle array. New J. Phys. 15, 083017 (2013)

    ADS  Google Scholar 

  25. Susa, C.E., Reina, J.H., Hildner, R.: Plasmon-assisted quantum control of distant emitters. Phys. Lett. A 378, 2371 (2014)

    ADS  MATH  Google Scholar 

  26. Hou, J., Slowik, K., Lederer, F., Rockstuhl, C.: Dissipation-driven entanglement between qubits mediated by plasmonic nanoantennas. Phys. Rev. B 89, 235413 (2014)

    ADS  Google Scholar 

  27. Nerkararyan, K.V., Bozhevolnyi, S.I.: Entanglement of two qubits mediated by a localized surface plasmon. Phys. Rev. B 92, 045410 (2015)

    ADS  Google Scholar 

  28. Gangaraj, S.A.Hassani, Nemilentsau, A., Hanson, G.W., Hughes, S.: Transient and steady-state entanglement mediated by three-dimensional plasmonic waveguides. Opt. Express 23, 22330 (2015)

    ADS  Google Scholar 

  29. Yang, W.-L., An, J.-H., Zhang, C.-J., Chen, C.-Y., Oh, C.H.: Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide. Sci. Rep. 5, 15513 (2015)

    ADS  Google Scholar 

  30. Otten, M., Shah, R.A., Scherer, N.F., Min, M., Pelton, M., Gray, S.K.: Entanglement of two, three, or four plasmonically coupled quantum dots. Phys. Rev. B 92, 125432 (2015)

    ADS  Google Scholar 

  31. Zeng, X., Liao, Z., Al-Amri, M., Zubairy, M.S.: Controllable waveguide via dielectric cylinder covered with graphene: tunable entanglement. Europhys. Lett. 115, 14002 (2016)

    ADS  Google Scholar 

  32. Hu, Z.-D., Liang, X., Wang, J., Zhang, Y.: Quantum coherence and quantum correlation of two qubits mediated by a one-dimensional plasmonic waveguide. Opt. Express 24, 10817 (2016)

    ADS  Google Scholar 

  33. Otten, M., Larson, J., Min, M., Wild, S.M., Pelton, M., Gray, S.K.: Origins and optimization of entanglement in plasmonically coupled quantum dots. Phys. Rev. A 94, 022312 (2016)

    ADS  Google Scholar 

  34. Iliopoulos, N., Terzis, A.F., Yannopapas, V., Paspalakis, E.: Prolonging entanglement dynamics near periodic plasmonic nanostructures. Phys. Rev. B 96, 075405 (2017)

    ADS  Google Scholar 

  35. Dumitrescu, E., Lawrie, B.: Antibunching dynamics of plasmonically mediated entanglement generation. Phys. Rev. A 96, 053826 (2017)

    ADS  Google Scholar 

  36. Hensen, M., Heilpern, T., Gray, S.K., Pfeiffer, W.: Strong coupling and entanglement of quantum emitters embedded in a nanoantenna-enhanced plasmonic cavity. ACS Photon. 5, 240 (2018)

    Google Scholar 

  37. Iliopoulos, N., Thanopulos, I., Yannopapas, V., Paspalakis, E.: Counter-rotating effects and entanglement dynamics in strongly coupled quantum-emitter-metallic-nanoparticle structures. Phys. Rev. B 97, 115402 (2018)

    ADS  Google Scholar 

  38. Zhang, F., Ren, J.J., Duan, X.K., Chen, Z., Gong, Q.H., Gu, Y.: Evanescent-field-modulated two-qubit entanglement in an emitters-plasmon coupled system. J. Phys. Condens. Matt. 30, 305302 (2018)

    Google Scholar 

  39. Iliopoulos, N., Thanopulos, I., Yannopapas, V., Paspalakis, E.: Quantum correlations in quantum emitters strongly coupled with metallic nanoparticles. Quantum Inf. Proc. 18, 110 (2019)

    ADS  MathSciNet  MATH  Google Scholar 

  40. Yannopapas, V., Paspalakis, E., Vitanov, N.V.: Plasmon-induced enhancement of quantum interference near metallic nanostructures. Phys. Rev. Lett. 103, 063602 (2009)

    ADS  Google Scholar 

  41. Evangelou, S., Yannopapas, V., Paspalakis, E.: Modifying free-space spontaneous emission near a plasmonic nanostructure. Phys. Rev. A 83, 023819 (2011)

    ADS  Google Scholar 

  42. Evangelou, S., Yannopapas, V., Paspalakis, E.: Simulating quantum interference in spontaneous decay near plasmonic nanostructures: population dynamics. Phys. Rev. A 83, 055805 (2011)

    ADS  Google Scholar 

  43. Evangelou, S., Yannopapas, V., Paspalakis, E.: Transparency and slow light in a four-level quantum system near a plasmonic nanostructure. Phys. Rev. A 86, 053811 (2012)

    ADS  Google Scholar 

  44. Carreño, F., Antón, M.A., Yannopapas, V., Paspalakis, E.: Control of the absorption of a four-level quantum system near a plasmonic nanostructure. Phys. Rev. B 95, 195410 (2017)

    ADS  Google Scholar 

  45. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    ADS  MATH  Google Scholar 

  46. Das, S., Agarwal, G.S.: Protecting bipartite entanglement by quantum interferences. Phys. Rev. A 81, 052341 (2010)

    ADS  Google Scholar 

  47. Nair, A.N., Arun, R.: Comment on “Protecting bipartite entanglement by quantum interferences”. Phys. Rev. A 97, 036301 (2018)

    ADS  Google Scholar 

  48. Bellomo, B., Franco, R.Lo, Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    ADS  Google Scholar 

  49. Bellomo, B., Franco, R.Lo, Maniscalco, S., Compagno, G.: Entanglement trapping in structured environments. Phys. Rev. A 78, 060302 (2008)

    ADS  Google Scholar 

  50. Ali, M., Rau, A.R.P., Alber, G.: Quantum discord for two-qubit X states. Phys. Rev. A 81, 042105 (2010)

    ADS  Google Scholar 

  51. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    ADS  Google Scholar 

  52. Bellomo, B., Franco, R.Lo, Maniscalco, S., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    ADS  Google Scholar 

  53. Agarwal, G.S.: Anisotropic vacuum-induced interference in decay channels. Phys. Rev. Lett. 84, 5500 (2000)

    ADS  Google Scholar 

  54. Kiffner, M., Macovei, M., Evers, J., Keitel, C.H.: Vacuum-Induced Processes in Multilevel Atoms in “Progress in Optics” edited by E. Wolf (Elsevier, Amsterdam, 2010) Vol. 55, p. 85

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Paspalakis.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A

Here, we give the expressions for the elements of the composite density matrix \(\rho ^{(2)}_{AB}(t)\). Since the elements of the single-qubit density matrix are given in Eq. (2) and the composite two-qubit density matrix is given by the tensor product \(\rho ^{(2)}_{AB}(t)=\rho ^{(1)}_A(t) \otimes \rho ^{(1)}_B(t)\), following Ref. [49], we take

$$\begin{aligned} \rho ^{(2)}_{\mathcal{KK}}(t)= & {} \rho ^{(2)}_{\mathcal{KK}}(0)|q(t)|^4, \end{aligned}$$
(22)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{LL}}(t)= & {} \rho ^{(2)}_{\mathcal{KK}}(0)|q(t)|^2(1-|q(t)|^2)+\rho ^{(2)}_{\mathcal{LL}}(0)|q(t)|^2, \end{aligned}$$
(23)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{MM}}(t)= & {} \rho ^{(2)}_{\mathcal{KK}}(0)|q(t)|^2(1-|q(t)|^2)+\rho ^{(2)}_{\mathcal{MM}}(0)|q(t)|^2, \end{aligned}$$
(24)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{NN}}(t)= & {} 1-[\rho ^{(2)}_{\mathcal{KK}}(t)+\rho ^{(2)}_{\mathcal{LL}}(t)+\rho ^{(2)}_{\mathcal{MM}}(t)], \end{aligned}$$
(25)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{KL}}(t)= & {} \rho ^{(2)}_{\mathcal{KL}}(0)q(t)|q(t)|^2, \end{aligned}$$
(26)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{KM}}(t)= & {} \rho ^{(2)}_{\mathcal{KM}}(0)q(t)|q(t)|^2, \end{aligned}$$
(27)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{KN}}(t)= & {} \rho ^{(2)}_{\mathcal{KN}}(0)q^2(t), \end{aligned}$$
(28)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{LM}}(t)= & {} \rho ^{(2)}_{\mathcal{LM}}(0)|q(t)|^2, \end{aligned}$$
(29)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{LN}}(t)= & {} \rho ^{(2)}_{\mathcal{KM}}(0)q(t)(1-|q(t)|^2)+\rho ^{(2)}_{\mathcal{LN}}(0)q(t), \end{aligned}$$
(30)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{MN}}(t)= & {} \rho ^{(2)}_{\mathcal{KL}}(0)q(t)(1-|q(t)|^2)+\rho ^{(2)}_{\mathcal{MN}}(0)q(t), \end{aligned}$$
(31)

where \(\rho ^{(2)}_{ij}(t)={\rho ^{(2){^*}}_{ij}}(t)\), with \(i,j={{\mathcal {K}}},{{\mathcal {L}}},{{\mathcal {M}}},{{\mathcal {N}}}\).

Appendix B

Here, we give the details for the derivation of concurrence and QD for a composite system consists by two two-level systems. Since the states given by Eqs. (9) are X-states, the concurrence is given by

$$\begin{aligned} C=\max \left\{ 0, C_1, C_2 \right\} , \end{aligned}$$
(32)

with \(C_1=2(|\rho ^{(2)}_{\mathcal{KN}}|-\sqrt{\rho ^{(2)}_{\mathcal{LL}}\rho ^{(2)}_{\mathcal{MM}}})\) and \(C_2=2(|\rho ^{(2)}_{\mathcal{LM}}|-\sqrt{\rho ^{(2)}_{\mathcal{KK}}\rho ^{(2)}_{\mathcal{NN}}})\).

For the initial state \(\rho ^{(2)}_{\varPhi }(0)\) [see Eq. (9a)], the element \(\rho ^{(2)}_{\mathcal{KN}}\) is initially zero and remains zero for every t [49]. Therefore, from Eq. (32), one obtains that \(C_1\) is always negative, leading to the concurrence \(C_\varPhi (t)\) for the initial state \(\rho ^{(2)}_{\varPhi }(0)\) being equal to \(C_2\). Furthermore, for \(0\le a \le 1\) and \(0\le r \le 1\), one can easily prove [6]

$$\begin{aligned} C_{\varPhi }(t)= & {} 2\max \left\{ 0,|q(t)|^2 \left[ ra\sqrt{1-a^2}\right. \right. \nonumber \\&\quad \left. \left. -\frac{1}{2}\sqrt{(1-r)\left( 1-|q(t)|^2+\frac{1-r}{4}|q(t)|^4 \right) } \right] \right\} . \end{aligned}$$
(33)

Now, when the initial state is \(\rho ^{(2)}_{\varPsi }(0)\) [see Eq. (9b)], the matrix element \(\rho ^{(2)}_{\mathcal{LM}}(t)\) in \(\rho ^{(2)}_{\varPsi }(t)\) is zero at all times; thus, we essentially obtain that the concurrence \(C_\varPsi (t)\) for this initial state equals \(C_1\). From Ref. [6] again, we write

$$\begin{aligned} C_{\varPsi }(t)= & {} 2\max \left\{ 0,|q(t)|^2 \left[ ra\sqrt{1-a^2}+\frac{1}{4}\left( |q(t)|^2(1+3r-4ra^2)\right. \right. \right. \nonumber \\&\quad \left. \left. \left. +4ra^2-2(1+r) \right) \right] \right\} . \end{aligned}$$
(34)

Substituting Eqs. (33)–(34) into Eq. (3), we can also compute EoF for \(\rho _{\varPhi }^{(2)}(0)\) and \(\rho _{\varPsi }^{(2)}(0)\), correspondingly. Because the final analytical expression for EoF is rather complex, we will not present it here.

Writing Eq. (9) in a matrix form, we take

$$\begin{aligned} \rho ^{(2)}_{\varPhi }(0)= & {} \left[ \begin{array}{cccc} \frac{1-r}{4} &{} 0 &{} 0 &{} 0 \\ 0 &{} r(1-a^2)+\frac{1-r}{4} &{} ra \sqrt{1-a^2} &{} 0 \\ 0 &{} ra\sqrt{1-a^2} &{} ra^2+\frac{1-r}{4} &{} 0 \\ 0 &{} 0 &{} 0 &{} \frac{1-r}{4} \end{array} \right] , \end{aligned}$$
(35)
$$\begin{aligned} \rho ^{(2)}_{\varPsi }(0)= & {} \left[ \begin{array}{cccc} r(1-a^2)+\frac{1-r}{4} &{} 0 &{} 0 &{} ra\sqrt{1-a^2} \\ 0 &{} \frac{1-r}{4} &{} 0 &{} 0 \\ 0 &{} 0 &{} \frac{1-r}{4} &{} 0 \\ ra\sqrt{1-a^2} &{} 0 &{} 0 &{} ra^2+\frac{1-r}{4} \end{array} \right] \, . \end{aligned}$$
(36)

The composite density matrix elements for \(t > 0\) and for the initial states \(\rho ^{(2)}_{\varPhi }(0)\) and \(\rho ^{(2)}_{\varPsi }(0)\) are given [6, 48, 49, 52] as follows: In case of \(\rho ^{(2)}_{\varPhi }(t)\), the matrix elements read

$$\begin{aligned}&\rho ^{(2)}_{\mathcal{KK}}(t)=\frac{1-r}{4}|q(t)|^4, \end{aligned}$$
(37a)
$$\begin{aligned}&\rho ^{(2)}_{\mathcal{LL}}(t)=\left[ r(1-a^2)+\frac{1-r}{2} \right] |q(t)|^2-\frac{1-r}{4}|q(t)|^4, \end{aligned}$$
(37b)
$$\begin{aligned}&\rho ^{(2)}_{\mathcal{MM}}(t)=\left[ ra^2+\frac{1-r}{2} \right] |q(t)|^2-\frac{1-r}{4}|q(t)|^4, \end{aligned}$$
(37c)
$$\begin{aligned}&\rho ^{(2)}_{\mathcal{NN}}(t)=1-|q(t)|^2+\frac{1-r}{4}|q(t)|^4, \end{aligned}$$
(37d)
$$\begin{aligned}&\rho ^{(2)}_{\mathcal{LM}}(t)=ra\sqrt{1-a^2}|q(t)|^2, \end{aligned}$$
(37e)

and in case of \(\rho ^{(2)}_{\varPsi }(t)\), the matrix elements read

$$\begin{aligned} \rho ^{(2)}_{\mathcal{KK}}(t)&=\left[ r(1-a^2)+\frac{1-r}{4} \right] |q(t)|^4, \end{aligned}$$
(38a)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{LL}}(t)&=\left[ r(1-a^2)+\frac{1-r}{2} \right] |q(t)|^2-\left[ r(1-a^2)+\frac{1-r}{4}\right] |q(t)|^4, \end{aligned}$$
(38b)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{MM}}(t)&=\left[ r(1-a^2)+\frac{1-r}{2} \right] |q(t)|^2-\left[ r(1-a^2)+\frac{1-r}{4}\right] |q(t)|^4, \end{aligned}$$
(38c)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{NN}}(t)&=1-2\left[ r(1-a^2)+\frac{1-r}{2} \right] |q(t)|^2+\left[ r(1-a^2)+\frac{1-r}{4} \right] |q(t)|^4, \end{aligned}$$
(38d)
$$\begin{aligned} \rho ^{(2)}_{\mathcal{KN}}(t)&=ra\sqrt{1-a^2} q^2(t), \end{aligned}$$
(38e)

with \(\rho ^{(2)}_{ij}={\rho ^{(2)}_{ji}}^*\) and all the other elements equal to zero in both cases. So, using these equations for the elements of density matrix, we can derive Eqs. (33)–(34).

Now, we turn our attention to QD. As before, our initial states, Eqs. (9), are X-states, which can be written in the most general form in the basis \({{\mathcal {B}}}=\{ |{{\mathcal {K}}}\rangle \equiv |11\rangle , |{{\mathcal {L}}}\rangle \equiv |10\rangle , |{{\mathcal {M}}}\rangle \equiv |01\rangle , |{{\mathcal {N}}}\rangle \equiv |00\rangle \}\); we thus obtain

$$\begin{aligned} \rho ^{(2)}_{AB}(0)= \left[ \begin{array}{cccc} \rho ^{(2)}_{\mathcal{KK}} &{} 0 &{} 0 &{} \rho ^{(2)}_{\mathcal{KN}} \\ 0 &{} \rho ^{(2)}_{\mathcal{LL}} &{} \rho ^{(2)}_{\mathcal{LM}} &{} 0 \\ 0 &{} \rho ^{(2)}_{\mathcal{ML}} &{} \rho ^{(2)}_{\mathcal{MM}} &{} 0 \\ \rho ^{(2)}_{\mathcal{NK}} &{} 0 &{} 0 &{} \rho ^{(2)}_{\mathcal{NN}} \end{array} \right] \, . \end{aligned}$$
(39)

We note that \(\sum _{i=1}^4 \rho ^{(2)}_{ii}=1\) holds in the above equation. Here, we assume that all the elements of the matrix are real. By diagonalizing the density matrix \(\rho ^{(2)}_{AB}(0)\), we obtain its eigenvalues, given by

$$\begin{aligned} \lambda _0= & {} \frac{\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{NN}}+\sqrt{(\rho ^{(2)}_{\mathcal{KK}}-\rho ^{(2)}_{\mathcal{NN}})^2+4|\rho ^{(2)}_{\mathcal{KN}}|^2}}{2}, \end{aligned}$$
(40)
$$\begin{aligned} \lambda _1= & {} \frac{\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{NN}}-\sqrt{(\rho ^{(2)}_{\mathcal{KK}}-\rho ^{(2)}_{\mathcal{NN}})^2+4|\rho ^{(2)}_{\mathcal{KN}}|^2}}{2}, \end{aligned}$$
(41)
$$\begin{aligned} \lambda _2= & {} \frac{\rho ^{(2)}_{\mathcal{LL}}+\rho ^{(2)}_{\mathcal{MM}}+\sqrt{(\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{MM}})^2+4|\rho ^{(2)}_{\mathcal{LM}}|^2}}{2}, \end{aligned}$$
(42)
$$\begin{aligned} \lambda _3= & {} \frac{\rho ^{(2)}_{\mathcal{LL}}+\rho ^{(2)}_{\mathcal{MM}}-\sqrt{(\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{MM}})^2+4|\rho ^{(2)}_{\mathcal{LM}}|^2}}{2}. \end{aligned}$$
(43)

By substituting Eqs. (40)–(43) into Eq. (4), we obtain for the mutual information

$$\begin{aligned} I(\rho ^{(2)}_{AB})=S(\rho ^{(1)}_A)+S(\rho ^{(1)}_B)+\sum _{j=0}^3 \lambda _j \log _2\lambda _j. \end{aligned}$$
(44)

In general, a von Neumann measurement on the subsystem B can be written [51] as

$$\begin{aligned} \varPi ^B_i=V\varPi _iV^\dagger , \quad i=0,1 \quad , \end{aligned}$$
(45)

with \(\varPi _i=|i\rangle \langle i|\) and \(V\in SU(2)\). After such a measurement, the composite density matrix is given by Eq. (5) with the corresponding probabilities [see Eq. (5)]. A matrix \(V \in SU(2)\) can be written in the form

$$\begin{aligned} V=t {{\mathbb {I}}}+ i\mathbf {y}\cdot \varvec{\sigma } \end{aligned}$$
(46)

where \(\varvec{\sigma }=\left\{ \sigma _1, \sigma _2, \sigma _3 \right\} \) with the Pauli matrices \(\sigma _i\), (\(i=1,2,3\)) and \(t, y_1, y_2, y_3\) being real numbers, for which \(t^2+y_1^2+y_2^2+y_3^2=1\) holds. Equation (46) thus implies that three of the four parameters are independent taking values in the interval \([-1,1]\). The most general way to write a X-structured state is given [51] by

$$\begin{aligned} \rho ^{(2)}_{AB}=\frac{1}{4}\left( {{\mathbb {I}}}_{4 \times 4}+\varvec{\alpha }\cdot \varvec{\sigma }\otimes {{\mathbb {I}}}_{2 \times 2}+{{\mathbb {I}}}_{2 \times 2} \otimes \varvec{\beta }\cdot \varvec{\sigma }+\sum _{j=1}^3 c_j \sigma _j \otimes \sigma _j\right) , \end{aligned}$$
(47)

where after some algebra, we can rewrite it as [50]

$$\begin{aligned} \rho ^{(2)}_{AB}(0)=\frac{1}{4} \left[ \begin{array}{cccc} 1+d_1 &{} 0 &{} 0 &{} c_1-c_2 \\ 0 &{} 1+d_2 &{} c_1+c_2 &{} 0 \\ 0 &{} c_1+c_2 &{} 1+d_3 &{} 0 \\ c_1-c_2 &{} 0 &{} 0 &{} 1+d_4 \end{array} \right] , \end{aligned}$$
(48)

where all the coefficients are real numbers, \(d_1=c_3+a_3+b_3\), \(d_2=-c_3+a_3-b_3\), \(d_3=-c_3-a_3+b_3\) and \(d_4=c_3-a_3-b_3\). Now, using the elements of the composite density matrix of Eq. (39), we have: \(a_3=\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{MM}}-\rho ^{(2)}_{\mathcal{NN}}\), \(b_3=\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{MM}}-\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{NN}}\), \(c_3=\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{NN}}-\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{MM}}\), \(c_1=2(\rho ^{(2)}_{\mathcal{LM}}+\rho ^{(2)}_{\mathcal{KN}})\) and \(c_2=2(\rho ^{(2)}_{\mathcal{LM}}-\rho ^{(2)}_{\mathcal{KN}})\).

In order to evaluate the matrix \(\rho ^{(2)}_{AB_i}\) of Eq. (5), with \(i=0,1\), we write the projective measurement in the form of Eq. (45), starting from Eq. (5) and following the procedure given in Ref. [51], we obtain that

$$\begin{aligned} p_0\rho ^{(2)}_{AB_0}= & {} \frac{1}{4}\left[ {{\mathbb {I}}}_{4 \times 4}+b_3z_3+z_1c_1\sigma _1+z_2c_2\sigma _2+(a_3+c_3z_3)\sigma _3 \right] , \end{aligned}$$
(49)
$$\begin{aligned} p_1\rho ^{(2)}_{AB_1}= & {} \frac{1}{4}\left[ {{\mathbb {I}}}_{4 \times 4}-b_3z_3-z_1c_1\sigma _1-z_2c_2\sigma _2+(a_3-c_3z_3)\sigma _3 \right] , \end{aligned}$$
(50)

where we have used the unit vector \(\mathbf {z}=(z_1,z_2,z_3)\) as defined in Ref. [51], \(z_1=2(-ty_2+y_1y_3)\), \(z_2=2(ty_1+y_2y_3)\) and \(z_3=t^2+y_3^2-y_1^2-y_2^2\). Now, taking the trace of Eqs. (49) and (50), we find the probabilities

$$\begin{aligned} p_0= & {} \frac{1+b_3z_3}{2} , \end{aligned}$$
(51)
$$\begin{aligned} p_1= & {} \frac{1-b_3z_3}{2}. \end{aligned}$$
(52)

By diagonalizing Eqs. (49) and (50), we obtain their eigenvalues. Rewriting the probabilities of Eqs. (51) and (52) using the density matrix elements, we have \(p_0=(\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{MM}})k+(\rho ^{(2)}_{\mathcal{LL}}+\rho ^{(2)}_{\mathcal{NN}})l\) and \(p_1=(\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{MM}})l+(\rho ^{(2)}_{\mathcal{LL}}+\rho ^{(2)}_{\mathcal{NN}})k\), and finally, one obtains the eigenvalues of \(\rho ^{(2)}_{AB_0}\) and \(\rho ^{(2)}_{AB_1}\) as

$$\begin{aligned} \upsilon _{\pm }(\rho ^{(2)}_{AB_0})= & {} \frac{1 \pm \theta }{2}, \end{aligned}$$
(53)
$$\begin{aligned} w_{\pm }(\rho ^{(2)}_{AB_1})= & {} \frac{1 \pm \theta ^\prime }{2}, \end{aligned}$$
(54)

respectively, where the parameters \(\theta \) and \(\theta ^\prime \) are provided by

$$\begin{aligned} \theta= & {} \sqrt{\frac{\left[ (\rho ^{(2)}_{\mathcal{KK}}-\rho ^{(2)}_{\mathcal{MM}})k+ (\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{NN}})l \right] ^2+\varTheta }{ \left[ (\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{MM}})k+ (\rho ^{(2)}_{\mathcal{LL}}+\rho ^{(2)}_{\mathcal{NN}})l \right] ^2}}, \end{aligned}$$
(55)
$$\begin{aligned} \theta ^\prime= & {} \sqrt{\frac{\left[ (\rho ^{(2)}_{\mathcal{KK}}-\rho ^{(2)}_{\mathcal{MM}})l+ (\rho ^{(2)}_{\mathcal{LL}}-\rho ^{(2)}_{\mathcal{NN}})k \right] ^2+\varTheta }{ \left[ (\rho ^{(2)}_{\mathcal{KK}}+\rho ^{(2)}_{\mathcal{MM}})l+ (\rho ^{(2)}_{\mathcal{LL}}+\rho ^{(2)}_{\mathcal{NN}})k \right] ^2}}, \end{aligned}$$
(56)

and \(\varTheta =4\left[ ((\rho ^{(2)}_{\mathcal{LM}})^2+(\rho ^{(2)}_{\mathcal{KN}})^2)(n+m)+2\rho ^{(2)}_{\mathcal{LM}}\rho ^{(2)}_{\mathcal{KN}}(n-m) \right] \). The klmn parameters used above are given by

$$\begin{aligned} k= & {} t^2+y_3^2, \quad l=y_1^2+y_2^2, \nonumber \\ m= & {} (ty_1+y_2y_3)^2, \quad n=(ty_2-y_1y_3)^2. \end{aligned}$$
(57)

Using \(t^2+y_1^2+y_2^2+y_3^2=1\) and \(t, y_1, y_2, y_3 \in [-1,1]\), we derive the following useful relations: \(k+l=1\), \(k-l=z_3\), \(4m=z_2^2\) and \(4n=z_1^2\). Thus, we have: \(k, l \in [0,1]\) and \(m, n \in [0,1/4]\). So, the three out of four parameters are independent. (We choose k, l and m to be independent following Ref. [50].)

Now, using the eigenvalues of the matrices \(\rho ^{(2)}_{AB_0}\) and \(\rho ^{(2)}_{AB_1}\) [see Eqs. (53) and (54), respectively], we can finally compute the corresponding von Neumann entropies. Thus, we obtain

$$\begin{aligned} S\left( \rho ^{(2)}_{AB_0}\right)= & {} -\sum _{i=\pm } \upsilon _i \log _2 \upsilon _i, \end{aligned}$$
(58)
$$\begin{aligned} S\left( \rho ^{(2)}_{AB_1}\right)= & {} -\sum _{i=\pm } w_i \log _2 w_i. \end{aligned}$$
(59)

The quantum conditional entropy in Eq. (7) can be thus written as

$$\begin{aligned} S\left( \rho ^{(2)}_{AB} | \{ \varPi ^B_i \}\right) =p_0S\left( \rho ^{(2)}_{AB_0}\right) +p_1S\left( \rho ^{(2)}_{AB_1}\right) , \end{aligned}$$
(60)

and as a result, the classical correlation of our system is given by

$$\begin{aligned} CC\left( \rho ^{(2)}_{AB}\right) =\max _{\{ \varPi ^B_i \}} J\left( \rho ^{(2)}_{AB} | \{ \varPi ^B_i \}\right) =S\left( \rho ^{(1)}_A\right) - \min _{\{ \varPi ^B_i \}} S\left( \rho ^{(2)}_{AB} | \{ \varPi ^B_i \}\right) . \end{aligned}$$
(61)

Therefore, in order to compute the classical correlation of our system, we need to minimize \(S(\rho ^{(2)}_{AB} | \{ \varPi ^B_i \})\) given by Eq. (60); subsequently, we can obtain the QD.

In order to minimize Eq. (60), we follow the procedure of Ref. [50]. Initially, we observe that Eq. (60) is symmetric under the interchange of the parameters \(k \leftrightarrow l\). Thus, Eq. (60) is an even function of \((k-l)\) and as a result, it has endpoints for \(k=l=1/2\) and \(k=0\), \(l=1\) (or \(k=1\), \(l=0\) since it is symmetric under \(k \leftrightarrow l\)). From Eqs. (57), we find that \(t=y_3=0\) (or \(y_1=y_2=0\)) is required at the endpoint \(k=0\), \(l=1\) (or \(k=1\), \(l=0\)). This fact implies that also \(m=n=0\) holds at these points. In case of \(k=l=1/2\), we find that the parameters \(\theta \) and \(\theta ^\prime \) become equal (\(\theta =\theta ^\prime \)) and as a result, this leads to \(S(\rho ^{(2)}_{AB_0})=S(\rho ^{(2)}_{AB_1})\), and the minimization of \(S(\rho ^{(2)}_{AB} | \{ \varPi ^B_i \})\) simply requires the minimization of \(S(\rho ^{(2)}_{AB_0})\) (or \(S(\rho ^{(2)}_{AB_1})\)). Moreover, \(\varTheta \) depends linearly on the parameters m and n and as a result, it takes its extreme values at the endpoints of these parameters, i.e., for \(m=0, 1/4\) and \(n=0, 1/4\). So, in this way, the maximum classical correlations of our composite system as well as all its quantum correlations can be computed at last.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Domenikou, N., Iliopoulos, N., Terzis, A.F. et al. Preservation of entanglement and quantum correlations next to periodic plasmonic nanostructures. Quantum Inf Process 18, 362 (2019). https://doi.org/10.1007/s11128-019-2471-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2471-7

Keywords

Navigation