Skip to main content
Log in

Distribution of spin correlation strengths in multipartite systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

For a two-qubit state, the isotropic strength measures the degree of isotropic spin correlation. The concept of isotropic strength is generalized to multipartite qudit systems, and the strength distributions for tripartite and quadripartite qudit systems are thoroughly investigated. We show that the sum of relative isotropic strengths of any three-qudit state over d-dimensional Hilbert space cannot exceed \(d-1\), which generalizes the case \(d=2\). The trade-off relations and monogamy-like relations of the sum of spin correlation strengths for pure three- and four-partite systems are derived. Moreover, the bounds of spin correlation strengths among different subsystems of a quadripartite state are used to analyze quantum entanglement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gamel, O.: Entangled Bloch spheres: Bloch matrix and two-qubit state space. Phys. Rev. A 93, 062320 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Brunner, N., Cavalcanti, D., Pironio, S., Scarani, V., Wehner, S.: Bell nonlocality. Rev. Mod. Phys. 86, 419 (2014)

    Article  ADS  Google Scholar 

  4. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655 (2012)

    Article  ADS  Google Scholar 

  5. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  6. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  7. Badzikag, P., Brukner, C., Laskowski, W., Paterek, T., Zukowski, M.: Experimentally friendly geometrical criteria for entanglement. Phys. Rev. Lett. 100, 140403 (2008)

    Article  ADS  Google Scholar 

  8. de Vicente, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624 (2007)

    MathSciNet  MATH  Google Scholar 

  9. Hassan, A.S.M., Joag, P.S.: Separability criterion for multipartite quantum states based on the Bloch representation of density matrices. Quantum Inf. Comput. 8, 773 (2007)

    MathSciNet  MATH  Google Scholar 

  10. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  11. de Vicente, J.I., Huber, M.: Multipartite entanglement detection from correlation tensors. Phys. Rev. A 84, 062306 (2011)

    Article  ADS  Google Scholar 

  12. Ma, Z.H., Chen, Z.H., Chen, J.L., Spengler, Ch., Gabriel, A., Huber, M.: Measure of genuine multipartite entanglement with computable lower bounds. Phys. Rev. A 83, 062325 (2011)

    Article  ADS  Google Scholar 

  13. Chen, Z.H., Ma, Z.H., Chen, J.L., Severini, S.: Improved lower bounds on genuine-multipartite-entanglement concurrence. Phys. Rev. A 85, 062320 (2012)

    Article  ADS  Google Scholar 

  14. Li, M., Jia, L., Wang, J., Shen, S., Fei, S.M.: Measure and detection of genuine multipartite entanglement for tripartite systems. Phys. Rev. A 96, 052314 (2017)

    Article  ADS  Google Scholar 

  15. Li, M., Shen, S., Jing, N., Fei, S.M., Li-Jost, X.Q.: Tight upper bound for the maximal quantum value of the Svetlichny operators. Phys. Rev. A 96, 042323 (2017)

    Article  ADS  Google Scholar 

  16. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  17. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A 34, 6899 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  18. Dakić, B., Vedral, V.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  19. Dür, W., Vidal, G., Cirac, J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  20. Luo, S.L., Fu, S.S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  22. Jevtic, S., Pusey, M., Jennings, D., Rudolph, T.: Quantum steering ellipsoids. Phys. Rev. Lett. 113, 020402 (2014)

    Article  ADS  Google Scholar 

  23. Milne, A., Jevtic, S., Jennings, D., Wiseman, H., Rudolph, T.: Quantum steering ellipsoids, extremal physical states and monogamy. New J. Phys. 16, 083017 (2014)

    Article  ADS  Google Scholar 

  24. Jevtic, S., Hall, M.J.W., Anderson, M.R., Zwierz, M., Wiseman, H.M.: Einstein–Podolsky–Rosen steering and the steering ellipsoid. J. Opt. Soc. Am. B 32(A), 40 (2015)

    Article  ADS  Google Scholar 

  25. Cheng, S., Milne, A., Hall, M.J.W., Wiseman, H.M.: Volume monogamy of quantum steering ellipsoids for multiqubit systems. Phys. Rev. A 94, 042105 (2016)

    Article  ADS  Google Scholar 

  26. Zhang, C., Cheng, S., Li, L., Liang, Q.Y., et al.: Experimental validation of quantum steering ellipsoids and tests of volume monogamy relations. Phys. Rev. Lett. 122, 070402 (2019)

    Article  ADS  Google Scholar 

  27. Bell, J.S.: On the Einstein–Podolsky–Rosen paradox. Physics 1, 195 (1965)

    Article  MathSciNet  Google Scholar 

  28. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880 (1969)

    Article  ADS  Google Scholar 

  29. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-\(\frac{1}{2}\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  30. Wang, Z., Qiao, J., Wang, J., et al.: The norms of Bloch vectors and a trade-off relation of Svetlichny inequalities. Quantum Inf. Process. 17, 220 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  31. Cheng, S., Hall, M.J.W.: Anisotropic invariance and the distribution of quantum correlations. Phys. Rev. Lett. 118, 010401 (2017)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank Jun Li for helpful discussions on entanglement detection and related problems. This work is partially supported by National Natural Science Foundation Grant No. 11531004, Simons Foundation Grant No. 523868 and a grant from China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Naihuan Jing.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, B., Jing, N. & Li-Jost, X. Distribution of spin correlation strengths in multipartite systems. Quantum Inf Process 18, 344 (2019). https://doi.org/10.1007/s11128-019-2458-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2458-4

Navigation