Skip to main content
Log in

Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an optical scheme to encode quantum information into three-photon decoherence-free states (single logical qubit information) and thereby acquire immunity from collective decoherence. Our scheme consists of quantum dots (QDs) within single-sided optical cavities and linearly optical devices for generation of three-photon decoherence-free states (logical qubits) and for encoding arbitrary quantum information. In our proposition, the interaction between photons and electron spin in the QD-cavity system is the critical component and plays the role of a quantum controlled operation to perform the processing of single logical qubit information with immunity against collective decoherence. Thus, we also analyze the performance of interaction between a photon and an electron in a QD. Consequently, for generating three-photon decoherence-free state encoded arbitrary quantum information, our scheme using QD-cavity systems is feasible. In practice, it could be implemented experimentally with current technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  MATH  Google Scholar 

  3. Bostrom, K., Felbinger, F.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    ADS  Google Scholar 

  4. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    ADS  Google Scholar 

  5. Kang, M.S., Heo, J., Choi, S.G., Moon, S., Han, S.W.: Implementation of SWAP test for two unknown states in photons via cross-Kerr nonlinearities under decoherence effect. Sci. Rep. 9, 6167 (2019)

    ADS  Google Scholar 

  6. Deng, F.G., Ren, B.C., Li, X.H.: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62, 46 (2017)

    Google Scholar 

  7. Heo, J., Hong, C.H., Kang, M.S., Yang, H., Yang, H.J., Hong, J.P., Choi, S.G.: Implementation of controlled quantum teleportation with an arbitrator for secure quantum channels via quantum dots inside optical cavities. Sci. Rep. 7, 14905 (2017)

    ADS  Google Scholar 

  8. Steinlechner, F., Ecker, S., Fink, M., Liu, B., Bavaresco, J., Huber, M., Scheidl, T., Ursin, R.: Distribution of high-dimensional entanglement via an intra-city free-space link. Nat. Commun. 8, 15971 (2017)

    ADS  Google Scholar 

  9. Heo, J., Kang, M.S., Hong, C.H., Yang, H.J., Choi, S.G., Hong, J.P.: Distribution of hybrid entanglement and hyperentanglement with time-bin for secure quantum channel under noise via weak cross-Kerr nonlinearity. Sci. Rep. 7, 10208 (2017)

    ADS  Google Scholar 

  10. Sheng, Y.B., Zhou, L.: Distributed secure quantum machine learning. Sci. Bull. 62, 1025–1029 (2017)

    Google Scholar 

  11. Hong, C.H., Heo, J., Kang, M.S., Jang, J., Yang, H.J.: Optical scheme for generating hyperentanglement having photonic qubit and time-bin via quantum dot and cross-Kerr nonlinearity. Sci. Rep. 8, 2566 (2018)

    ADS  Google Scholar 

  12. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, R2493 (1995)

    ADS  Google Scholar 

  13. Steane, A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. A 452, 2551 (1996)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Lidar, D., Brun, T.: Quantum Error Correction. Cambridge University Press, Cambridge (2013)

    Google Scholar 

  15. Viola, L., Knill, E., Lloyd, S.: Dynamical decoupling of open quantum systems. Phys. Rev. Lett. 82, 2417 (1999)

    ADS  MathSciNet  MATH  Google Scholar 

  16. Gorman, D.J., Young, K.C., Whaley, K.B.: Overcoming dephasing noise with robust optimal control. Phys. Rev. A 86, 012317 (2012)

    ADS  Google Scholar 

  17. Xu, G.F., Long, G.L.: Protecting geometric gates by dynamical decoupling. Phys. Rev. A 90, 022323 (2014)

    ADS  Google Scholar 

  18. Wiseman, H.M., Milburn, G.J.: Quantum theory of optical feedback via homodyne detection. Phys. Rev. Lett. 70, 548 (1993)

    ADS  Google Scholar 

  19. Carvalho, A.R.R., Reid, A.J.S., Hope, J.J.: Controlling entanglement by direct quantum feedback. Phys. Rev. A 78, 012334 (2008)

    ADS  Google Scholar 

  20. Wang, C.Q., Xu, B.M., Zou, J., He, Z., Yan, Y., Li, J.G., Shao, B.: Feed-forward control for quantum state protection against decoherence. Phys. Rev. A 89, 032303 (2014)

    ADS  Google Scholar 

  21. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    ADS  Google Scholar 

  22. Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)

    ADS  Google Scholar 

  23. Viola, L., Fortunato, E.M., Pravia, M.A., Knill, E., Laflamme, R., Cory, D.G.: Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059 (2001)

    ADS  Google Scholar 

  24. Viola, L., Knill, E., Laflamme, R.: Constructing qubits in physical systems. J. Phys. A 34, 7067 (2001)

    ADS  MathSciNet  MATH  Google Scholar 

  25. Altepeter, J.B., Hadley, P.G., Wendelken, S.M., Berglund, A.J., Kwiat, P.G.: Experimental investigation of a two-qubit decoherence-free subspace. Phys. Rev. Lett. 92, 147901 (2004)

    ADS  Google Scholar 

  26. Shao, X.Q., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Preparation of three- and four-qubit decoherence-free states via Zeno-like measurements. J. Phys. B 43, 135502 (2010)

    ADS  Google Scholar 

  27. Chen, C.: Photonic four-qubit entangled decoherence-free states assisted by cavity-QED system. Int. J. Theor. Phys. 55, 4841 (2016)

    ADS  MATH  Google Scholar 

  28. Dong, L., Wang, J.X., Li, Q.Y., Shen, Z., Dong, H.K., Xiu, X.M., Gao, Y.J.: Single logical qubit information encoding scheme with the minimal optical decoherence-free subsystem. Opt. Lett. 41, 1030 (2016)

    ADS  Google Scholar 

  29. Zhou, Y.S., Li, X., Deng, Y., Li, H.R., Luo, M.X.: Generation of hybrid four-qubit entangled decoherence-free states assisted by the cavity-QED system. Opt. Commun. 366, 397 (2016)

    ADS  Google Scholar 

  30. Wang, M., Yan, F., Gao, T.: Generation of four-photon polarization entangled decoherence-free states with cross-Kerr nonlinearity. Sci. Rep. 6, 38233 (2016)

    ADS  Google Scholar 

  31. Dong, L., Lin, Y.F., Li, Q.Y., Dong, H.K., Xiu, X.M., Gao, Y.J.: Generation of three-photon polarization-entangled decoherence-free states. Ann. Phys. 371, 287 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  32. Liu, J., Dong, P., Zhou, J., Cao, Z.L.: Universal non-adiabatic holonomic quantum computation in decoherence-free subspaces with quantum dots inside a cavity. Laser Phys. Lett. 14, 055202 (2017)

    ADS  Google Scholar 

  33. Heo, J., Kang, M.S., Hong, C.H., Hong, J.P., Choi, S.G.: Preparation of quantum information encoded on three-photon decoherence-free states via cross-Kerr nonlinearities. Sci. Rep. 8, 13843 (2018)

    ADS  Google Scholar 

  34. Imamoglu, A., Awschalom, D.D., Burkard, G., DiVincenzo, D.P., Loss, D., Sherwin, M., Small, A.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    ADS  Google Scholar 

  35. Elzerman, J.M., Hanson, R., van Beveren, W.L.H., Witkamp, B., Vandersypen, L.M.K., Kouwenhoven, L.P.: Single-shot read-out of an individual electron spin in a quantum dot. Nature 430, 431 (2004)

    ADS  Google Scholar 

  36. Kroutvar, M., Ducommun, Y., Heiss, D., Bichler, M., Schuh, D., Abstreiter, G., Finley, J.J.: Optically programmable electron spin memory using semiconductor quantum dots. Nature 432, 81 (2004)

    ADS  Google Scholar 

  37. Golovach, V.N., Khaetskii, A., Loss, D.: Phonon-induced decay of the electron spin in quantum dots. Phys. Rev. Lett. 93, 016601 (2004)

    ADS  Google Scholar 

  38. Petta, J.R., Johnson, A.C., Taylor, J.M., Laird, E.A., Yacoby, A., Lukin, M.D., Marcus, C.M., Hanson, M.P., Gossard, A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005)

    ADS  Google Scholar 

  39. Greilich, A., Yakovlev, D.R., Shabaev, A., Efros, A.L., Yugova, I.A., Oulton, R., Stavarache, V., Reuter, D., Wieck, A., Bayer, M.: Mode locking of electron spin coherences in singly charged quantum dots. Science 313, 341 (2006)

    ADS  Google Scholar 

  40. Hu, C.Y., Young, A., O’Brien, J.L., Munro, W.J., Rarity, J.G.: Giant optical Faraday rotation induced by a single-electron spin in a quantum dot: applications to entangling remote spins via a single photon. Phys. Rev. B 78, 085307 (2008)

    ADS  Google Scholar 

  41. Hu, C.Y., Munro, W.J., Rarity, J.G.: Deterministic photon entangler using a charged quantum dot inside a microcavity. Phys. Rev. B 78, 125318 (2008)

    ADS  Google Scholar 

  42. Hu, C.Y., Munro, W.J., Young, A., O’Brien, J.L., Rarity, J.G.: Proposed entanglement beam splitter using a quantum-dot spin in a double-sided optical microcavity. Phys. Rev. B 80, 205326 (2009)

    ADS  Google Scholar 

  43. Xu, X., Yao, W., Sun, B., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Optically controlled locking of the nuclear field via coherent dark-state spectroscopy. Nature 459, 1105 (2009)

    ADS  Google Scholar 

  44. Press, D., De Greve, K., McMahon, P.L., Ladd, T.D., Friess, B., Schneider, C., Kamp, M., Hofling, S., Forchel, A., Yamamoto, Y.: Ultrafast optical spin echo in a single quantum dot. Nat. Photon. 4, 367 (2010)

    ADS  Google Scholar 

  45. Hu, C.Y., Rarity, J.G.: Loss-resistant state teleportation and entanglement swapping using a quantum-dot spin in an optical microcavity. Phys. Rev. B 83, 115303 (2011)

    ADS  Google Scholar 

  46. Hu, C.Y., Rarity, J.G.: Extended linear regime of cavity-QED enhanced optical circular birefringence induced by a charged quantum dot. Phys. Rev. B 91, 075304 (2015)

    ADS  Google Scholar 

  47. Hu, C.Y.: Photonic transistor and router using a single quantum-dot confined spin in a single-sided optical microcavity. Sci. Rep. 7, 45582 (2017)

    ADS  Google Scholar 

  48. Gao, W.B., Fallahi, P., Togan, E., Delteil, A., Chin, Y.S., Miguel-Sanchez, J., Imamoglu, A.: Quantum teleportation from a propagating photon to a solid-state spin qubit. Nat. Commun. 4, 2744 (2013)

    ADS  Google Scholar 

  49. Kawakami, E., Scarlino, P., Ward, D.R., Braakman, F.R., Savage, D.E., Friesen, M.G., Coppersmith, S.N., Eriksson, M.A., Vandersypen, L.M.K.: Electrical control of a long-lived spin qubit in a Si/SiGe quantum dot. Nat. Nanotechnol. 9, 666 (2014)

    ADS  Google Scholar 

  50. Kuhlmann, A.V., Prechtel, J.H., Houel, J., Ludwig, A., Reuter, D., Wieck, A.D., Warburton, R.J.: Transform-limited single photons from a single quantum dot. Nat. Commun. 6, 8204 (2015)

    ADS  Google Scholar 

  51. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)

    ADS  Google Scholar 

  52. Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Scheme for secure swapping two unknown states of a photonic qubit and an electron-spin qubit using simultaneous quantum transmission and teleportation via quantum dots inside single-sided optical cavities. Phys. Lett. A 381, 1845 (2017)

    ADS  MATH  Google Scholar 

  53. Müller, M., Vural, H., Schneider, C., Rastelli, A., Schmidt, O.G., Höfling, S., Michler, P.: Quantum-dot single-photon sources for entanglement enhanced interferometry. Phys. Rev. Lett. 118, 257402 (2017)

    ADS  Google Scholar 

  54. Heo, J., Kang, M.S., Hong, C.H., Choi, S.G., Hong, J.P.: Constructions of secure entanglement channels assisted by quantum dots inside single-sided optical cavities. Opt. Commun. 396, 239 (2017)

    ADS  Google Scholar 

  55. Yao, W., Liu, R.B., Sham, L.J.: Theory of control of the spin-photon interface for quantum networks. Phys. Rev. Lett. 95, 030504 (2005)

    ADS  MATH  Google Scholar 

  56. Kim, H., Bose, R., Shen, T.C., Solomon, G.S., Waks, E.: A quantum logic gate between a solid-state quantum bit and a photon. Nat. Photon. 7, 373 (2013)

    ADS  Google Scholar 

  57. Wei, H.R., Deng, F.G.: Universal quantum gates on electron-spin qubits with quantum dots inside single-side optical microcavities. Opt. Express 22, 593 (2014)

    ADS  Google Scholar 

  58. Ren, B.C., Wei, H.R., Deng, F.G.: Deterministic photonic spatial-polarization hyper-controlled-not gate assisted by a quantum dot inside a one-side optical microcavity. Laser Phys. Lett. 10, 095202 (2013)

    ADS  Google Scholar 

  59. Luo, M.X., Wang, X.: Parallel photonic quantum computation assisted by quantum dots in one-side optical microcavities. Sci. Rep. 4, 5732 (2014)

    Google Scholar 

  60. Huber, T., Ostermann, L., Prilmüller, M., Solomon, G.S., Ritsch, H., Weihs, G., Predojević, A.: Coherence and degree of time-bin entanglement from quantum dots. Phys. Rev. B 93, 201301(R) (2016)

    ADS  Google Scholar 

  61. Walls, D.F., Milburn, G.J.: Quantum Optics. Springer, Berlin (1994)

    MATH  Google Scholar 

  62. Reithmaier, J.P., Sek, G., Löffler, A., Hofmann, C., Kuhn, S., Reitzenstein, S., Keldysh, L.V., Kulakovskii, V.D., Reinecke, T.L., Forchel, A.: Strong coupling in a single quantum dot–semiconductor microcavity system. Nature 432, 197 (2004)

    ADS  Google Scholar 

  63. Yoshie, T., Scherer, A., Hendrickson, J., Khitrova, G., Gibbs, H.M., Rupper, G., Ell, C., Shchekin, O.B., Deppe, D.G.: Vacuum Rabi splitting with a single quantum dot in a photonic crystal nanocavity. Nature 432, 200 (2004)

    ADS  Google Scholar 

  64. De Greve, K., Press, D., McMahon, P.L., Yamamoto, Y.: Ultrafast optical control of individual quantum dot spin qubits. Rep. Prog. Phys. 76, 092501 (2013)

    ADS  Google Scholar 

  65. Dory, C., Fischer, K.A., Müller, K., Lagoudakis, K.G., Sarmiento, T., Rundquist, A., Zhang, J.L., Kelaita, Y., Vučković, J.: Complete coherent control of a quantum dot strongly coupled to a nanocavity. Sci. Rep. 6, 25172 (2016)

    ADS  Google Scholar 

  66. Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    ADS  Google Scholar 

  67. Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304(R) (2007)

    ADS  Google Scholar 

  68. Li, T., Gao, J.C., Deng, F.G., Long, G.L.: High-fidelity quantum gates on quantum-dot-confined electron spins in low-Q optical microcavities. Ann. Phys. 391, 150 (2018)

    ADS  MathSciNet  Google Scholar 

  69. Bayer, M., Ortner, G., Stern, O., Kuther, A., Gorbunov, A.A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T.L., Walck, S.N., Reithmaier, J.P., Klopf, F., Schäfer, F.: Fine structure of neutral and charged excitons in self-assembled In(Ga)As/(Al)GaAs quantum dots. Phys. Rev. B 65, 195315 (2002)

    ADS  Google Scholar 

  70. Finley, J.J., Mowbray, D.J., Skolnick, M.S., Ashmore, A.D., Baker, C., Monte, A.F.G., Hopkinson, M.: Fine structure of charged and neutral excitons in InAs-Al0.6Ga0.4As quantum dots. Phys. Rev. B 66, 153316 (2002)

    ADS  Google Scholar 

  71. Warburton, R.J.: Single spins in self-assembled quantum dots. Nat. Mater. 12, 483 (2013)

    ADS  Google Scholar 

  72. Borri, P., Langbein, W., Schneider, S., Woggon, U., Sellin, R.L., Ouyang, D., Bimberg, D.: Ultralong dephasing time in InGaAs quantum dots. Phys. Rev. Lett. 87, 157401 (2001)

    ADS  Google Scholar 

  73. Birkedal, D., Leosson, K., Hvam, J.M.: Long lived coherence in self-assembled quantum dots. Phys. Rev. Lett. 87, 227401 (2001)

    ADS  Google Scholar 

  74. Langbein, W., Borri, P., Woggon, U., Stavarache, V., Reuter, D., Wieck, A.D.: Radiatively limited dephasing in InAs quantum dots. Phys. Rev. B 70, 033301 (2004)

    ADS  Google Scholar 

  75. Gerardot, B.D., Brunner, D., Dalgarno, P.A., Öhberg, P., Seidl, S., Kroner, M., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: Optical pumping of a single hole spin in a quantum dot. Nature 451, 441 (2008)

    ADS  Google Scholar 

  76. Brunner, D., Gerardot, B.D., Dalgarno, P.A., Wüst, G., Karrai, K., Stoltz, N.G., Petroff, P.M., Warburton, R.J.: A coherent single-hole spin in a semiconductor. Science 325, 70 (2009)

    ADS  Google Scholar 

  77. Qiao, B., Guo, L., Ruda, H.E.: Quantum computing in decoherence-free subspace constructed by triangulation. Adv. Math. Phys. 210, 365653 (2010)

    MathSciNet  MATH  Google Scholar 

  78. Qiao, B.: Quantum computation in triangular decoherence-free subdynamic space. Front. Phys. 10, 198 (2015)

    Google Scholar 

  79. Paulisch, V., Kimble, H.J., González-Tudela, A.: Universal quantum computation in waveguide QED using decoherence free subspaces. New J. Phys. 18, 043041 (2016)

    ADS  Google Scholar 

  80. Wang, F., Huang, Y.Y., Zhang, Z.Y., Zu, C., Hou, P.Y., Yuan, X.X., Wang, W.B., Zhang, W.G., He, L., Chang, X.Y., Duan, L.M.: Room-temperature storage of quantum entanglement using decoherence-free subspace in a solid-state spin system. Phys. Rev. B 96, 134314 (2017)

    ADS  Google Scholar 

  81. Yang, C., Tsai, C., Hwang, T.: Fault tolerant two-step quantum secure direct communication protocol against collective noises. Sci. China-Phys. Mech. Astron. 54, 496 (2011)

    ADS  Google Scholar 

  82. Yang, C.W., Hwang, T.: Improved QSDC protocol over a collective-dephasing noise channel. Int. J. Theor. Phys. 51, 3941 (2012)

    MathSciNet  MATH  Google Scholar 

  83. Chang, Y., Zhang, S., Li, J., Yan, L.: Robust EPR-pairs-based quantum secure communication with authentication resisting collective noise. Sci. China-Phys. Mech. Astron. 57, 1907 (2014)

    ADS  Google Scholar 

  84. Zhang, M.H., Li, H.F.: Fault-tolerant quantum blind signature protocols against collective noise. Quantum Inf. Process. 15, 4283 (2016)

    ADS  MATH  Google Scholar 

  85. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15, 5023 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  86. Song, Y., Yang, L.: Practical quantum bit commitment protocol based on quantum oblivious transfer. Appl. Sci. 8, 1990 (2018)

    Google Scholar 

  87. Hennessy, K., Badolato, A., Winger, M., Gerace, D., Atatüre, M., Gulde, S., Fält, S., Hu, E.L., Imamoğlu, A.: Quantum nature of a strongly coupled single quantum dot–cavity system. Nature 445, 896 (2007)

    ADS  Google Scholar 

  88. Reitzensteina, S., Hofmann, C., Gorbunovb, A., Strauß, M., Kwon, S.H., Schneider, C., Löffler, A., Höfling, S., Kamp, M., Forchel, A.: AlAs/GaAs micropillar cavities with quality factors exceeding 150.000. Appl. Phys. Lett. 90, 251109 (2007)

    ADS  Google Scholar 

  89. Arnold, C., Loo, V., Lemaître, A., Sagnes, I., Krebs, O., Voisin, P., Senellart, P., Lanco, L.: Optical bistability in a quantum dots/micropillar device with a quality factor exceeding 200000. Appl. Phys. Lett. 100, 111111 (2012)

    ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the ICT R&D program of MSIP/IITP[1711057505, Reliable crypto-system standards and core technology development for secure quantum key distribution network] and the R&D Convergence program of NST(National Research Council of Science and Technology) of Republic of Korea (Grant No. CAP-18-08-KRISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jino Heo.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, C., Heo, J., Kang, MS. et al. Scheme for encoding single logical qubit information into three-photon decoherence-free states assisted by quantum dots. Quantum Inf Process 18, 216 (2019). https://doi.org/10.1007/s11128-019-2315-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-019-2315-5

Keywords

Navigation