Skip to main content
Log in

Dynamics of measurement-induced nonlocality under decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Measurement-induced nonlocality (MIN)—captures nonlocal effects of a quantum state due to local von Neumann projective measurements, is a bona-fide measure of quantum correlation between constituents of a composite system. In this paper, we study the dynamical behavior of entanglement (measured by concurrence), Hilbert–Schmidt MIN and fidelity-based MIN (F-MIN) under local noisy channels such as hybrid (consists of bit flip, phase flip and bit-phase flip), generalized amplitude damping (GAD) and depolarizing channels for the initial Bell diagonal state. We observed that while sudden death of entanglement occurs in hybrid and GAD channels, MIN and F-MIN are more robust against such noises. Finally, we demonstrate the revival of MIN and F-MIN after a dark point of time against depolarizing noise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Schrödinger, E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555 (1935)

    Article  ADS  Google Scholar 

  3. Bell, J.S.: On the Einstein Podolsky Rosen paradox. Physics 1, 195 (1964)

    Article  MathSciNet  Google Scholar 

  4. Horodecki, M., Horodecki, P., Horodecki, R.: General teleportation channel, singlet fraction, and quasi distillation. Phys. Rev. A 60, 1888–1897 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  5. Acin, A., Brunner, N., Gisin, N., Massar, S., Pironio, S., Scarani, V.: Device-independent security of quantum cryptography against collective attacks. Phys. Rev. Lett. 98, 230501 (2007)

    Article  ADS  Google Scholar 

  6. Pironio, S., Acin, A., Massar, S., Boyer de la Giroday, A., Matsukevich, D.N., Maunz, P., Olmschenk, S., Hayes, D., Luo, L., Manning, T.A., Monroe, C.: Random numbers certified by Bells theorem. Nature (London) 464, 1021–1024 (2010)

    Article  ADS  Google Scholar 

  7. Brukner, C., Aukowski, M., Zeilinger, A.: Quantum communication complexity protocol with two entangled qutrits. Phys. Rev. Lett. 89, 197901 (2002)

    Article  ADS  Google Scholar 

  8. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88(1–4), 017901 (2001)

    Article  ADS  Google Scholar 

  9. Lanyon, B.P., Barbieri, M., Almeida, M.P., White, A.G.: Experimental quantum computing without entanglement. Phys. Rev. Lett. 101, 200501 (2008)

    Article  ADS  Google Scholar 

  10. Girolami, D., Adesso, G.: Quantum discord for general two-qubit states: analytical progress. Phys. Rev. A 83, 052108 (2011)

    Article  ADS  Google Scholar 

  11. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16, 033027 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Rau, A.R.P.: Calculation of quantum discord in higher dimensions for X- and other specialized states. Quantum Inf. Process 17, 213 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  13. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

  14. Dakic, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  15. Wiseman, H.M., Jones, S.J., Doherty, A.C.: Steering, entanglement, nonlocality, and the Einstein–Podolsky–Rosen paradox. Phys. Rev. Lett. 98, 140402 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  17. Peters, N.A., Barreiro, J.T., Goggin, M.E., Wei, T.-C., Kwiat, P.G.: Remote state preparation: arbitrary remote control of photon polarization. Phys. Rev. Lett. 94, 150502 (2005)

    Article  ADS  Google Scholar 

  18. Hill, S., Wootters, W.K.: Entanglement of a pair of quantum bits. Phys. Rev. Lett. 78, 5022–5025 (1997)

    Article  ADS  Google Scholar 

  19. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  20. Chang, L., Luo, S.: Remedying the local ancilla problem with geometric discord. Phys. Rev. A 87, 062303 (2013)

    Article  ADS  Google Scholar 

  21. Wang, X., Yu, C.-S., Yi, X.X.: An alternative quantum fidelity for mixed states of qudits. Phys. Lett. A 373, 58 (2008)

    Article  ADS  Google Scholar 

  22. Jozsa, R.: Fidelity for mixed quantum states. J. Mod. opt. 41, 2315 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  23. Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality. Phys. Lett. A 381, 3028 (2017)

    Article  ADS  Google Scholar 

  24. Muthuganesan, R., Sankaranarayanan, R.: Fidelity based measurement induced nonlocality and its dynamics in quantum noisy channels. Phys. Lett. A 381, 3855 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  25. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  26. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  27. Yu, T., Eberly, J.H.: Sudden death of entanglement. Science 293, 5914 (2009)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Muthuganesan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Muthuganesan, R., Sankaranarayanan, R. Dynamics of measurement-induced nonlocality under decoherence. Quantum Inf Process 17, 305 (2018). https://doi.org/10.1007/s11128-018-2073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2073-9

Keywords

Navigation