Skip to main content
Log in

Adiabatic quantum games and phase-transition-like behavior between optimal strategies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper we propose a game of a single qubit whose strategies can be implemented adiabatically. In addition, we show how to implement the strategies of a quantum game through controlled adiabatic evolutions, where we analyze the payment of a quantum player for various situations of interest: (1) when the players receive distinct payments, (2) when the initial state is an arbitrary superposition, and (3) when the device that implements the strategy is inefficient. Through a graphical analysis, it is possible to notice that the curves that represent the gains of the players present a behavior similar to the curves that give rise to a phase transition in thermodynamics. These transitions are associated with optimal strategy changes and occur in the absence of entanglement and interaction between the players.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. dos Santos, T.B., Peixoto, P.E.: Agonistic interactions in the dragonfly Micrathyria ungulata: does male fighting investment come from an innate ability or an indomitable will? Behav. Ecol. Sociobiol. 71, 104 (2017)

    Article  Google Scholar 

  2. Smith, J.M.: Evolution and the Theory of Games, vol. viii. Cambridge University Press, Cambridge (1982)

    Book  MATH  Google Scholar 

  3. Morris, A., MacGlashan, J., Littman, M.L., Cushman, F.: Evolution of flexibility and rigidity in retaliatory punishment. PNAS 114, 10396–10401 (2017)

    Article  Google Scholar 

  4. Rilling, J.K., Gutman, D.A., Zeh, T.R.: A neural basis for social cooperation. Neuron 35, 395–405 (2002)

    Article  Google Scholar 

  5. Rilling, J.K., et al.: Neural correlates of social cooperation and non-cooperation as a function of psychopathy. Biol. Psychiat. 61, 1260–1271 (2007)

    Article  Google Scholar 

  6. Kar, R.B.: The evolutionary game-theoretic foundations of law. Law Soc. Inq. 42, 38–48 (2017)

    Article  Google Scholar 

  7. Fischer, I., Suleiman, R.: Election frequency and the emergence of cooperation in a simulated intergroup conflict. J. Confl. Resolut. 41, 483–508 (1997)

    Article  Google Scholar 

  8. Streich, P., Levy, J.S.: Time horizons, discounting, and intertemporal choice. J. Confl. Resolut. 51, 199–226 (2007)

    Article  Google Scholar 

  9. Chiu, C.-P., Lai, S.-K.: A comparison of regimes of policies: lessons from the two-person iterated prisoner’s dilemma game. Environ. Plan. B 35, 794–809 (2008)

    Article  Google Scholar 

  10. Vassiliades, V., Cleanthous, A., Christodoulou, C.: Multiagent reinforcement learning: spiking and nonspiking agents in the iterated prisioner’s dilemma. IEEE Trans. Neural Netw. 22, 639–653 (2011)

    Article  Google Scholar 

  11. Plous, S.: The nuclear arms race: prisoner’s dilemma or perceptual dilemma? J. Peace Res. 30, 163–179 (1993)

    Article  Google Scholar 

  12. Pajunen, K.: Living in agreement with a contract: the management of moral and viable firm-stakeholder relationships. J. Bus. Ethics 68, 243–258 (2006)

    Article  Google Scholar 

  13. Clempner, J.B.: A game theory model for manipulation based on machiavellianism: moral and ethical behavior. JASSS 20, 12 (2017)

    Article  Google Scholar 

  14. Chiong, R., Wong, D.M.L., Jankovic, L.: Agent-based economic modelling with iterated prisioner’s dilemma. ICOCI 2006, 1–6 (2006)

    Google Scholar 

  15. Chiong, R.: Applying genetic algorithms to economy market using iterated prisoner’s dilemma. Appl. Comput. 1–2, 733–737 (2007)

    Google Scholar 

  16. Baxa, J., Brozova, H., Kvasnicka, R.: Cooperative behavior and economic growth. Math. Methods Econ. 2009, 13–18 (2009)

    Google Scholar 

  17. Perez-Castrillo, D., Sotomayor, M.: On the manipulability of competitive equilibrium rules in many-to-many buyer-seller markets. Int. J. Game Theory 46, 1137–1161 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  18. Krach, S., et al.: Can machines think? Interaction and perspective taking with robots investigated via fMRI. Plos One 3(e2597), 1–11 (2008)

    Google Scholar 

  19. Asher, N., Paul, S., Venant, A.: Message exchange games in strategic contexts. J Philos Logic 46, 355–404 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  20. Shinar, J.: Differential games and artificial intelligence-A new approach for solving complex dynamic conflicts. Lecture Notes in Control and Information Sciences 156, 100–110 (1991)

    Article  MATH  Google Scholar 

  21. Basilico, N., Gatti, N., Amigoni, F.: Patrolling security games: definition and algorithms for solving large instances with single patroller and single intruder. Artif. Intell. 184, 78–123 (2012)

    Article  MATH  Google Scholar 

  22. Kargarian, A., et al.: Artificial intelligence-based loss allocation algorithm in open access environment. J. Energy Eng. 140, 04013021 (2014)

    Article  Google Scholar 

  23. Pease, A., et al.: Lakatos-style collaborative mathematics through dialectical, structured and abstract argumentation. Artif. Intell. 246, 181–219 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Lee, C.F., Johnson, N.: Parrondo games and quantum algorithms, pp. 1–7 (2002). arxiv:quant-ph/0203043v1

  25. Doscher, C., Keyl, M.: An introduction to quantum coin tossing. Fluct Noise Lett. 2, R125–R137 (2002)

    Article  MathSciNet  Google Scholar 

  26. Gogonea, V., Merz, K.M.: Fully quantum mechanical description of proteins in solution. Combining linear scaling quantum mechanical methodologies with the Poisson–Boltzmann equation. J. Phys. Chem. A 103, 5171–5188 (1999)

    Article  Google Scholar 

  27. Berkley, A.J., et al.: A scalable readout system for a superconducting adiabatic quantum optimization system. Supercond. Sci. Technol. 23, 105014 (2010)

    Article  ADS  Google Scholar 

  28. Johnson, M.W., et al.: A scalable control system for a superconducting adiabatic quantum optimization processor. ibid 23, 065004 (2010)

  29. Barends, R., et al.: Digitized adiabatic quantum computing with a superconducting circuit. Nature 534, 222–226 (2016)

    Article  ADS  Google Scholar 

  30. Boixo, S., et al.: Evidence for quantum annealing with more than one hundred qubits. Nat. Phys. 10, 218–224 (2014)

    Article  Google Scholar 

  31. Friedenauer, A., et al.: Simulating a quantum magnet with trapped ions. Nat. Phys. 4, 757–761 (2008)

    Article  Google Scholar 

  32. Kim, K., et al.: Quantum simulation of frustrated Ising spins with trapped ions. Nature 465, 590–593 (2010)

    Article  ADS  Google Scholar 

  33. Mitra, A., et al.: Experimental implementation of local adiabatic evolution algorithms by an NMR quantum information processor. J. Magn. Reson. 177, 285–298 (2005)

    Article  ADS  Google Scholar 

  34. Steffen, M., et al.: Experimental implementation of an adiabatic quantum optimization algorithm. Phys. Rev. Lett. 90, 067903 (2003)

    Article  ADS  Google Scholar 

  35. Peng, X., et al.: Quantum adiabatic algorithm for factorization and its experimental implementation. Phys. Rev. Lett. 101, 220405 (2008)

    Article  ADS  Google Scholar 

  36. Xu, K., et al.: Experimental adiabatic quantum factorization under ambient conditions based on a solid-state single spin system. Phys. Rev. Lett. 118, 130504 (2017)

    Article  ADS  Google Scholar 

  37. Klein, J., Beil, F., Halfmann, T.: Robust population transfer by stimulated raman adiabatic passage in a Pr\(_3\)+:Y\(_2\)SiO\(_5\) crystal. Phys. Rev. Lett. 99, 113003 (2007)

    Article  ADS  Google Scholar 

  38. Born, M., Fock, V.: Beweis des Adiabatensatzes. Z. Phys. A Hadron Nucl. 51, 165–180 (1928)

    MATH  Google Scholar 

  39. Kato, T.: On the Adiabatic theorem of quantum mechanics. J. Phys. Soc. Jpn. 5, 435–439 (1950)

    Article  ADS  Google Scholar 

  40. Messiah, A.: Quantum Mechanics. North-Holland, Amsterdam (1962)

    MATH  Google Scholar 

  41. Sarandy, M.S., Lidar, D.A.: Adiabatic approximation in open quantum systems. Phys. Rev. A 71, 012331 (2005)

    Article  ADS  Google Scholar 

  42. Ambainis, A., Regev, O.: An elementary proof of the quantum adiabatic theorem, pp. 1–12 (2004). arxiv:quant-ph/0411152v2

  43. Sarandy, M.S., Wu, L.-A., Lidar, D.A.: Consistency of the adiabatic theorem. Quantum Inf. Process. 3, 331–349 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  44. Amin, M.: Consistency of the adiabatic theorem. Phys. Rev. Lett. 102, 220401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  45. Tong, D.M.: Quantitative condition is necessary in guaranteeing the validity of the adiabatic approximation. Phys. Rev. Lett. 104, 120401 (2010)

    Article  ADS  Google Scholar 

  46. Du, J., et al.: Experimental study of the validity of quantitative conditions in the quantum adiabatic theorem. Phys. Rev. Lett. 101, 060403 (2008)

    Article  ADS  Google Scholar 

  47. Du, J., Li, H., Xu, X., Zhou, X., Han, R.: Phase-transition-like behaviour of quantum games. J. Phys. A Math. Gen. 36, 6551 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  48. Hen, I.: Quantum gates with controlled adiabatic evolutions. Phys. Rev. A 91, 022309 (2015)

    Article  ADS  Google Scholar 

  49. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052–1055 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  50. Sun, C.-P.: High-order adiabatic approximation for non-Hermitian quantum system and complexification of Berry’s phase. Phys. Scr. 48, 393 (1993)

    Article  ADS  Google Scholar 

  51. Ibáñez, S., Muga, J.G.: Adiabaticity condition for non-Hermitian Hamiltonians. Phys. Rev. A 89, 033403 (2014)

    Article  ADS  Google Scholar 

  52. Colin, E.C.: Pesquisa Operacional: 170 Aplicações em Estratégia, Finanças, Logística, Produção, Marketing e Vendas. LTC, Rio de Janeiro (2007)

    Google Scholar 

  53. Moreira, D.A.: Pesquisa Operacional: Curso Introdutório. Cengage Learning, São Paulo (2010)

    Google Scholar 

  54. Du, J., et al.: Experimental realization of quantum games on a quantum computer. Phys. Rev. Lett. 88, 137902 (2002)

    Article  ADS  Google Scholar 

  55. Li, S.-B.: Simulation of continuous variable quantum games without entanglement. J. Phys. A Math. Theor. 44, 295302 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  56. Johnson, M.W., et al.: Quantum annealing with manufactured spins. Nature 473, 194–198 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

A.C.S. acknowledges financial support from the Brazilian agencies CNPq and the Brazilian National Institute of Science and Technology for Quantum Information (INCT-IQ), and M. A. P. would like to thank God for the opportunity to do this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. A. de Ponte.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Ponte, M.A., Santos, A.C. Adiabatic quantum games and phase-transition-like behavior between optimal strategies. Quantum Inf Process 17, 149 (2018). https://doi.org/10.1007/s11128-018-1918-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-1918-6

Keywords

Navigation