Skip to main content
Log in

Stationary amplitudes of quantum walks on the higher-dimensional integer lattice

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Stationary measures of quantum walks on the one-dimensional integer lattice are well studied. However, the stationary measure for the higher-dimensional case has not been clarified. In this paper, we give the stationary amplitude for quantum walks on the d-dimensional integer lattice with a finite support by solving the corresponding eigenvalue problem. As a corollary, we can obtain the stationary measures of the Grover walks. In fact, the amplitude for the stationary measure is an eigenfunction with eigenvalue 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687–1690 (1993)

    Article  ADS  Google Scholar 

  2. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SIAM, Philadelphia, pp. 1099–1108 (2005)

  3. Cantero, M.J., Grunbaum, F.A., Moral, L., Velazquez, L.: The CGMV method for quantum walks. Quantum Inf. Process. 11, 1149–1192 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Di Franco, C., Mc Gettrick, M., Machida, T., Busch, T.: Alternate two-dimensional quantum walk with a single-qubit coin. Phys. Rev. A 84, 042337 (2011)

    Article  ADS  Google Scholar 

  5. Endo, S., Endo, T., Konno, N., Segawa, E., Takei, M.: Limit theorems of a two-phase quantum walk with one defect. Quantum Inf. Comput. 15, 1373–1396 (2015)

    MathSciNet  Google Scholar 

  6. Endo, T., Kawai, H., Konno, N.: The stationary measure for diagonal quantum walk with one defect, arXiv:1603.08948 (2016)

  7. Endo, T., Kawai, H., Konno, N.: Stationary measures for the three-state Grover walk with one defect in one dimension. RIMS Kokyuroku 2010, 45–55 (2016)

    Google Scholar 

  8. Endo, T., Konno, N.: The stationary measure of a space-inhomogeneous quantum walk on the line. Yokohama Math. J. 60, 33–47 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Endo, T., Konno N., Obuse, H.: Relation between two-phase quantum walks and the topological invariant. arXiv:1511.04230 (2015)

  10. Endo, T., Konno, N., Segawa, E., Takei, M.: A one-dimensional Hadamard walk with one defect. Yokohama Math. J. 60, 49–90 (2014)

    MathSciNet  MATH  Google Scholar 

  11. Grimmett, G., Janson, S., Scudo, P.F.: Weak limits for quantum random walks. Phys. Rev. E 69, 026119 (2004)

    Article  ADS  Google Scholar 

  12. Higuchi, Y., Konno, N., Sato, I., Segawa, E.: Spectral and asymptotic properties of Grover walks on crystal lattices. J. Funct. Anal. 267, 4197–4235 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Inui, N., Konishi, Y., Konno, N.: Localization of two-dimensional quantum walks. Phys. Rev. A 69, 052323 (2004)

    Article  ADS  Google Scholar 

  14. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72, 056112 (2005)

    Article  ADS  Google Scholar 

  15. Kawai, H., Komatsu, T., Konno, N.: Stationary measures of three-state quantum walks on the one-dimensional lattice. arXiv:1702.01523 (2017)

  16. Komatsu, T.: Limiting distributions of quantum walks on the square lattice. Yokohama Math. J. 61, 67–86 (2015)

    MathSciNet  MATH  Google Scholar 

  17. Komatsu, T., Tate, T.: Eigenvalues of quantum walks of Grover and Fourier types. arXiv:1704.05236 (2017)

  18. Konno, N.: A new type of limit theorems for the one-dimensional quantum random walk. J. Math. Soc. Jpn. 57, 1179–1195 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  19. Konno, N.: The uniform measure for discrete-time quantum walks in one dimension. Quantum Inf. Process. 13, 1103–1125 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Konno, N., Luczak, T., Segawa, E.: Limit measures of inhomogeneous discrete-time quantum walks in one dimension. Quantum Inf. Process. 12, 33–53 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Konno, N., Takei, M.: The non-uniform stationary measure for discrete-time quantum walks in one dimension. Quantum Inf. Comput. 15, 1060–1075 (2015)

    MathSciNet  Google Scholar 

  22. Machida, T., Chandrashekar, C.M., Konno, N., Busch, T.: Limit distributions for different forms of four-state quantum walks on a two-dimensional lattice. Quantum Inf. Comput. 15, 1248–1258 (2015)

    MathSciNet  Google Scholar 

  23. Manouchehri, K., Wang, J.: Physical Implementation of Quantum Walks. Springer, Berlin (2013)

    MATH  Google Scholar 

  24. Portugal, R.: Quantum Walks and Search Algorithms. Springer, Berlin (2013)

    Book  MATH  Google Scholar 

  25. Tate, T.: Eigenvalues, absolute continuity and localizations for periodic unitary transition operators. arXiv:1411.4215 (2014)

  26. Wang, C., Lu, X., Wang, W.: The stationary measure of a space-inhomogeneous three-state quantum walk on the line. Quantum Inf. Process. 14, 867–880 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Watabe, K., Kobayashi, N., Katori, M., Konno, N.: Limit distributions of two-dimensional quantum walks. Phys. Rev. A 77, 062331 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the Grant-in-Aid for Scientific Research (Challenging Exploratory Research) of Japan Society for the Promotion of Science (Grant No. 15K13443).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Komatsu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Komatsu, T., Konno, N. Stationary amplitudes of quantum walks on the higher-dimensional integer lattice. Quantum Inf Process 16, 291 (2017). https://doi.org/10.1007/s11128-017-1737-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1737-1

Keywords

Navigation