Skip to main content
Log in

How Unruh effect affects freezing coherence in decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we investigate the influence of the Unruh effects on the coherence dynamics in an open quantum system which is subject to a nondissipative flip channel. We find that Unruh effect does not affect the known initial conditions which guarantee freezing of coherence, while it decreases the amount of preserved coherence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Wang, D., Huang, Y.D., Wang, Z.Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14, 2135 (2015)

    Article  ADS  MATH  Google Scholar 

  2. Wang, D., Huang, A.J., Sun, W.Y., Shi, J.D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  4. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  5. Shao, L.H., Xi, Z., Fan, H., Li, Y.: Fidelity and trace-norm distances for quantifying coherence. Phys. Rev. A. 91, 042120 (2015)

    Article  ADS  Google Scholar 

  6. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  7. Yuan, X., Zhou, H., Cao, Z., Ma, X.: Intrinsic randomness as a measure of quantum coherence. Phys. Rev. A 92, 022124 (2015)

    Article  ADS  Google Scholar 

  8. Aberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  ADS  Google Scholar 

  9. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  10. Lostaglio, M., Korzekwa, K., Jennings, D., Rudolph, T.: Quantum coherence, time-translation symmetry and thermodynamics. Phys. Rev. X 5, 021001 (2015)

    Google Scholar 

  11. Engel, G.S.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic system. Nature 446, 782 (2007). (London)

    Article  ADS  Google Scholar 

  12. Du, M.-M., Wang, D., Ye, L.: The dynamic behaviors of complementary correlations under decoherence channels. Sci. Rep. 7, 40934 (2017)

    Article  ADS  Google Scholar 

  13. Ye, B.-L., et al.: One-way quantum deficit and decoherence for two-qubit X states. Int. J. Theor. Phys. 55, 2237 (2016)

    Article  MATH  Google Scholar 

  14. Ye, B.-L., et al.: One-way quantum deficit and quantum coherence in the anisotropic XY chain. Sci. Chin. Phys. Mech. Astron. 60, 030311 (2017)

    Article  Google Scholar 

  15. Romero, E., Augulis, R., Novoderezhkin, V.I., Ferretti, M., Thieme, J., Zigmantas, D., Grondelle, R.: Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10, 676 (2014)

    Article  Google Scholar 

  16. Zurek, W.H.: Decoherence, einselection, and the quantum origins of the classical. Rev. Mod. Phys. 75, 715 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Breuer, H.P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2002)

    MATH  Google Scholar 

  18. Liu, X., Tian, Z.H., Wang, J.C., Jing, J.L.: Protecting quantum coherence of two-level atoms from vacuum fluctuations of electromagnetic field. Ann. Phys. 366, 102 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Bromley, T.R., Cianciaruso, M., Adesso, G.: Frozen quantum coherence. Phys. Rev. Lett. 114, 210401 (2015)

    Article  ADS  Google Scholar 

  20. Yu, X.D., Zhang, D.J., Liu, C.L., Tong, D.M.: Measure-independent freezing of quantum coherence. Phys. Rev. A 93, 060303(R) (2017)

    Article  Google Scholar 

  21. Silva, I.A., et al.: Observation of time-invariant coherence in a nuclear magnetic resonance quantum simulator. Phys. Rev. Lett. 117, 160402 (2016)

    Article  ADS  Google Scholar 

  22. Bromley, T.R., Cianciaruso, M., Franco, R.L., Adesso, G.: Unifying approach to the quantification of bipartite correlations by Bures distance. Phys. A Math. Theor. 47, 405302 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  23. Aaronson, B., Lo Franco, R., Adesso, G.: Comparative investigation of the freezing phenomena for quantum correlations under nondissipative decoherence. Phys. Rev. A 88, 012120 (2013)

    Article  ADS  Google Scholar 

  24. Aaronson, B., Lo Franco, R., Compagno, G., Adesso, G.: Hierarchy and dynamics of trace distance correlations. New J. Phys. 15, 093022 (2013)

    Article  ADS  Google Scholar 

  25. Cianciaruso, M., Bromley, T.R., Roga, W., Lo Franco, R., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  26. Xu, J.S., et al.: Experimental recovery of quantum correlations in absence of system-environment back-action. Nat. Commun. 4, 2851 (2013)

    Google Scholar 

  27. Streltsov, A., Adesso, G., Plenio, M.B.: Quantum Coherence as a Resource. arXiv: 1609.02439v3 (2017)

  28. Alsing, P.M., Fuentes-Schuller, I., Mann, R.B., Tessier, T.E.: Entanglement of Dirac fields in noninertial frames. Phys. Rev. A. 74, 032326 (2006)

    Article  ADS  Google Scholar 

  29. Wang, J.C., Deng, J.F., Jing, J.L.: Classical correlation and quantum discord sharing of Dirac fields in noninertial frames. Phys. Rev. A 81, 052120 (2010)

    Article  ADS  Google Scholar 

  30. Smith, A., Mann, R.B.: Persistence of tripartite nonlocality for noninertial observers. Phys. Rev. A 86, 012306 (2012)

    Article  ADS  Google Scholar 

  31. Wang, J.C., Pan, Q.Y., Jing, J.L.: Projective measurements and generation of entangled Dirac particles in Schwarzschild spacetime. Ann. Phys. 325, 1190 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Tian, Z.H., Jing, J.L.: How the Unruh effect affects transition between classical and quantum decoherences. Phys. Lett. B 707, 264 (2012)

    Article  ADS  Google Scholar 

  33. Wang, J.C., Tian, Z.H., Jing, J.L., Fan, H.: Irreversible degradation of quantum coherence under relativistic motion. Phys. Rev. A 93, 062105 (2016)

    Article  ADS  Google Scholar 

  34. Bruschi, D.E., Louko, J., Martın-Mart inez, E., Dragan, A., Fuentes Schuller, I.: Unruh effect in quantum information beyond the single-mode approximation. Phys. Rev. A 82, 042332 (2010)

    Article  ADS  Google Scholar 

  35. Martin-Martinez, E., Garay, L.J., Leon, J.: Unveiling quantum entanglement degradation near a Schwarzschild black hole. Phys. Rev. D 82, 064006 (2010)

    Article  ADS  Google Scholar 

  36. Montero, M., Martin-Martinez, E.: Convergence of fermionic-field entanglement at infinite acceleration in relativistic quantum information. Phys. Rev. A 85, 024301 (2012)

    Article  ADS  Google Scholar 

  37. Chang, J., Kwon, Y.: Entanglement behavior of quantum states of fermionic systems in an accelerated frame. Phys. Rev. A 85, 032302 (2012)

    Article  ADS  Google Scholar 

  38. Horodecki, R., Horodecki, M.: Information-theoretic aspects of inseparability of mixed states. Phys. Rev. A 54, 1838 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Shi, J.D., Xu, S., Ma, W.C., Song, X.K., Ye, L.: Purifying two-qubit entanglement in nonidentical decoherence by employing weak measurements. Quantum Inf. Process. 14, 1387 (2015)

    Article  ADS  MATH  Google Scholar 

  40. Sun, W.-Y., Wang, D., Shi, J.-D., Ye, L.: Exploration quantum steering, nonlocality and entanglement of two-qubit X-state in structured reservoirs. Sci. Rep. 7, 39651 (2017)

    Article  ADS  Google Scholar 

  41. Sun, W.-Y., Wang, D., Yang, J., Ye, L.: Enhancement of multipartite entanglement in an open system under non-inertial frames. Quantum Inf. Process. 16, 90 (2017)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Science Foundation of China under Grants Nos. 11575001, and 61601002, and also by the fund of Anhui Provincial Natural Science Foundation (Grant No. 1508085QF139).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, MM., Wang, D. & Ye, L. How Unruh effect affects freezing coherence in decoherence. Quantum Inf Process 16, 228 (2017). https://doi.org/10.1007/s11128-017-1678-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1678-8

Keywords

Navigation