Skip to main content
Log in

Accurate calculation of the geometric measure of entanglement for multipartite quantum states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This article proposes an efficient way of calculating the geometric measure of entanglement using tensor decomposition methods. The connection between these two concepts is explored using the tensor representation of the wavefunction. Numerical examples are benchmarked and compared. Furthermore, we search for highly entangled qubit states to show the applicability of this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Wei, T.C., Goldbart, P.M.: Geometric measure of entanglement and applications to bipartite and multipartite quantum states. Phys. Rev. A 68, 042307 (2003). doi:10.1103/PhysRevA.68.042307

    Article  ADS  Google Scholar 

  2. Shimony, A.: Degree of entanglement. Ann. New York Acad. Sci. 755(1), 675 (1995). doi:10.1111/j.1749-6632.1995.tb39008.x

    Article  ADS  MathSciNet  Google Scholar 

  3. Barnum, H., Linden, N.: Monotones and invariants for multi-particle quantum states. J. Phys. A Math. Gen. 34(35), 6787 (2001). http://stacks.iop.org/0305-4470/34/i=35/a=305

  4. Aulbach, M., Markham, D., Murao, M.: The maximally entangled symmetric state in terms of the geometric measure. New J. Phys. 12(7), 073025 (2010). http://stacks.iop.org/1367-2630/12/i=7/a=073025

  5. Streltsov, A., Kampermann, H., Bruß, D.: Simple algorithm for computing the geometric measure of entanglement. Phys. Rev. A 84, 022323 (2011). doi:10.1103/PhysRevA.84.022323

    Article  ADS  Google Scholar 

  6. Hu, S., Qi, L., Zhang, G.: Computing the geometric measure of entanglement of multipartite pure states by means of non-negative tensors. Phys. Rev. A 93, 012304 (2016). doi:10.1103/PhysRevA.93.012304

    Article  ADS  MathSciNet  Google Scholar 

  7. Verstraete, F., Murg, V., Cirac, J.: Matrix product states, projected entangled pair states, and variational renormalization group methods for quantum spin systems. Adv. Phys. 57(2), 143 (2008). doi:10.1080/14789940801912366

    Article  ADS  Google Scholar 

  8. Ni, G., Bai, M.: Spherical optimization with complex variables for computing US-eigenpairs. Comput. Optim. Appl. 65(3), 799 (2016). doi:10.1007/s10589-016-9848-7

    Article  MathSciNet  MATH  Google Scholar 

  9. Curtef, O., Dirr, G., Helmke, U.: Conjugate gradient algorithms for best rank-1 approximation of tensors. PAMM 7(1), 1062201 (2007). doi:10.1002/pamm.200700706

    Article  Google Scholar 

  10. Ni, G., Qi, L., Bai, M.: Geometric measure of entanglement and U-Eigenvalues of tensors. SIAM J. Matrix Anal. Appl. 35(1), 73 (2014). doi:10.1137/120892891

    Article  MathSciNet  MATH  Google Scholar 

  11. Enríquez, M., Puchała, Z., Życzkowski, K.: Minimal Rényi–Ingarden–Urbanik entropy of multipartite quantum states. Entropy 17(7), 5063 (2015). doi:10.3390/e17075063

    Article  ADS  Google Scholar 

  12. Raussendorf, R., Briegel, H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188 (2001). doi:10.1103/PhysRevLett.86.5188

    Article  ADS  Google Scholar 

  13. Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51(11), 112201 (2010). doi:10.1063/1.3511477

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Kolda, T.G., Bader, B.W.: Tensor decompositions and applications. SIAM Rev. 51(3), 455 (2009). doi:10.1137/07070111X

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Brody, D.C., Hughston, L.P.: Geometric quantum mechanics. J. Geom. Phys. 38(1), 19 (2001). doi:10.1016/S0393-0440(00)00052-8

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Kapteyn, A., Neudecker, H., Wansbeek, T.: An approach ton-mode components analysis. Psychometrika 51(2), 269 (1986). doi:10.1007/BF02293984

    Article  MathSciNet  MATH  Google Scholar 

  17. Bader, B.W., Kolda, T.G.: Matlab tensor toolbox version 2.6. Available online. (2015). http://www.sandia.gov/~tgkolda/TensorToolbox/

  18. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: On the best rank-1 and rank-(R1, R2, RN) Approximation of higher-order tensors. SIAM J. Matrix Anal. Appl. 21(4), 1324 (2000). doi:10.1137/S0895479898346995

    Article  MathSciNet  MATH  Google Scholar 

  19. Blasone, M., Dell’Anno, F., De Siena, S., Illuminati, F.: Hierarchies of geometric entanglement. Phys. Rev. A 77, 062304 (2008). doi:10.1103/PhysRevA.77.062304

    Article  ADS  MathSciNet  Google Scholar 

  20. Qi, L.: The best rank-one approximation ratio of a tensor space. SIAM J. Matrix Anal. Appl. 32(2), 430 (2011). doi:10.1137/100795802

    Article  MathSciNet  MATH  Google Scholar 

  21. Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273(4), 213 (2000). doi:10.1016/S0375-9601(00)00480-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Enríquez, M., Wintrowicz, I., Życzkowski, K.: Maximally entangled multipartite states: a brief survey. J. Phys. Conf. Ser 698(1), 012003 (2016). http://stacks.iop.org/1742-6596/698/i=1/a=012003

  23. Stepney, S., Sudbery, A., Braunstein, S.L.: Searching for highly entangled multi-qubit states. J. Phys. A Math. Gen. 38(5), 1119 (2005). http://stacks.iop.org/0305-4470/38/i=5/a=013

  24. Borras, A., Plastino, A.R., Batle, J., Zander, C., Casas, M., Plastino, A.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A Math. Theor. 40(44), 13407 (2007). http://stacks.iop.org/1751-8121/40/i=44/a=018

  25. Wei, T.C.: Entanglement under the renormalization-group transformations on quantum states and in quantum phase transitions. Phys. Rev. A 81, 062313 (2010). doi:10.1103/PhysRevA.81.062313

    Article  ADS  Google Scholar 

  26. Shi, Q.Q., Wang, H.L., Li, S.H., Cho, S.Y., Batchelor, M.T., Zhou, H.Q.: Geometric entanglement and quantum phase transitions in two-dimensional quantum lattice models. Phys. Rev. A 93, 062341 (2016). doi:10.1103/PhysRevA.93.062341

    Article  ADS  Google Scholar 

  27. Hillar, C.J., Lim, L.H.: Most tensor problems are NP-hard. ACM 60(6), 45:1 (2013). doi:10.1145/2512329

    MathSciNet  MATH  Google Scholar 

  28. Huang, Y.: Computing quantum discord is NP-complete. New J. Phys. 16(3), 033027 (2014). http://stacks.iop.org/1367-2630/16/i=3/a=033027

Download references

Acknowledgements

I want to give my sincere thanks to the Ohio State University Physics Department who financially supported my study. This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiyuan Teng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Teng, P. Accurate calculation of the geometric measure of entanglement for multipartite quantum states. Quantum Inf Process 16, 181 (2017). https://doi.org/10.1007/s11128-017-1633-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1633-8

Keywords

Navigation