Skip to main content
Log in

Quantum synchronization of chaotic oscillator behaviors among coupled BEC–optomechanical systems

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We consider and theoretically analyze a Bose-Einstein condensate (BEC) trapped inside an optomechanical system consisting of single-mode optical cavity with a moving end mirror. The BEC is formally analogous to a mirror driven by radiation pressure with strong nonlinear coupling. Such a nonlinear enhancement can make the oscillator display chaotic behavior. By establishing proper oscillator couplings, we find that this chaotic motion can be synchronized with other oscillators, even an oscillator network. We also discuss the scheme feasibility by analyzing recent experiment parameters. Our results provide a promising platform for the quantum signal transmission and quantum logic control, and they are of potential applications in quantum information processing and quantum networks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Vinokur, V.M., et al.: Superinsulator and quantum synchronization. Nature 452, 613–615 (2008)

    Article  ADS  Google Scholar 

  2. Heinrich, G., Ludwig, M., Qian, J., Kubala, B., Marquardt, F.: Collective dynamics in optomechanical arrays. Phys. Rev. Lett. 107, 043603 (2011)

    Article  ADS  Google Scholar 

  3. Zhirov, O.V., Shepelyansky, D.L.: Synchronization and bistability of a qubit coupled to a driven dissipative oscillator. Phys. Rev. Lett. 100, 014101 (2008)

    Article  ADS  Google Scholar 

  4. Orth, P.P., Roosen, D., Hofstetter, W., Hur, K.L.: Dynamics, synchronization, and quantum phase transitions of two dissipative spins. Phys. Rev. B 82, 144423 (2010)

    Article  ADS  Google Scholar 

  5. Zhirov, O.V., Shepelyansky, D.L.: Quantum synchronization and entanglement of two qubits coupled to a driven dissipative resonator. Phys. Rev. B 80, 014519 (2009)

    Article  ADS  Google Scholar 

  6. Giorgi, G.L., Plastina, F., Francica, G., Zambrini, R.: Spontaneous synchronization and quantum correlation dynamics of open spin systems. Phys. Rev. A 88, 042115 (2013)

    Article  ADS  Google Scholar 

  7. Lee, T.E., Sadeghpour, H.R.: Quantum synchronization of quantum van der Pol oscillators with trapped ions. Phys. Rev. Lett. 111, 234101 (2013)

    Article  ADS  Google Scholar 

  8. Xu, M.H., Tieri, D.A., Fine, E.C., Thompson, J.K., Holland, M.J.: Synchronization of two ensembles of atoms. Phys. Rev. Lett. 113, 154101 (2014)

    Article  ADS  Google Scholar 

  9. Walter, S., Nunnenkamp, A., Bruder, C.: Quantum synchronization of a driven self-sustained oscillator. Phys. Rev. Lett. 112, 094102 (2014)

    Article  ADS  Google Scholar 

  10. Ying, L., Lai, Y.C., Grebogi, C.: Quantum manifestation of a synchronization transition in optomechanical systems. Phys. Rev. A 90, 053810 (2014)

    Article  ADS  Google Scholar 

  11. Shlomi, K., et al.: Synchronization in an optomechanical cavity. Phys. Rev. E 91, 032910 (2015)

    Article  ADS  Google Scholar 

  12. Samoylova, M., Piovella, N.M., Robb, G.R., Bachelard, R., Courteille, Ph.W.: Synchronization of Bloch oscillations by a ring cavity. arXiv:1503.05616

  13. Mari, A., Farace, A., Didier, N., Giovannetti, V., Fazio, R.: Measures of quantum synchronization in continuous variable systems. Phys. Rev. Lett. 111, 103605 (2013)

    Article  ADS  Google Scholar 

  14. Ameri, V., et al.: Mutual information as an order parameter for quantum synchronization. Phys. Rev. A 91, 012301 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  15. Choi, S.H., Ha, S.Y.: Quantum synchronization of the Schrödinger-Lohe model. J. Phys. A Math. Theor. 47, 355104 (2014)

    Article  MATH  Google Scholar 

  16. Manzano, G., Galve, F., Giorgi, G.L., Hernández-García, E., Zambrini, R.: Synchronization, quantum correlations and entanglement in oscillator networks. Sci. Rep. 3, 1439 (2013)

    Article  ADS  Google Scholar 

  17. Li, W.L., Li, C., Song, H.S.: Quantum synchronization in an optomechanical system based on Lyapunov control. Phys. Rev. E 93, 062221 (2016)

    Article  ADS  Google Scholar 

  18. Walter, S., Nunnenkamp, A., Bruder, C.: Quantum synchronization of two Van der Pol oscillators. Ann. Phys. (Leipzig) 527, 131 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Chacón, R., Palmero, F., Cuevas-Maraver, J.: Impulse-induced localized control of chaos in starlike networks. Phys. Rev. E 93, 062210 (2016)

    Article  ADS  Google Scholar 

  20. Zhang, J., et al.: Quantum internet using code division multiple access. Sci. Rep. 3, 2211 (2013)

    ADS  Google Scholar 

  21. Li, W.L., Li, C., Song, H.S.: Quantum parameter identification for a chaotic atom ensemble system. Phys. Lett. A 380, 672–677 (2016)

    Article  ADS  MATH  Google Scholar 

  22. Modi, K., Brodutch, A., Cable, H., Paterek, T., Vedral, V.: The classical-quantum boundary for correlations: discord and related measures. Rev. Mod. Phys. 84, 1655–1707 (2012)

    Article  ADS  Google Scholar 

  23. Streltsov, A., Lee, S., Adesso, G.: Concentrating tripartite quantum information. Phys. Rev. Lett. 115, 030505 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  24. Campbell, S., et al.: Global quantum correlations in finite-size spin chains. New J. Phys. 15, 043033 (2013)

    Article  ADS  Google Scholar 

  25. Zhang, J., Zhang, Y., Yu, C.S.: entropic uncertainty relation and information exclusion relation for multiple measurements in the presence of quantum memory. Sci. Rep. 5, 11701 (2015)

    Article  ADS  Google Scholar 

  26. Li, W.L., Zhang, F.Y., Li, C., Song, H.S.: Quantum synchronization in a star-type cavity QED network. Commun. Nonlinear Sci. Numer. Simul. 42, 121–131 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  27. Li, W.L., Li, C., Song, H.S.: Quantum synchronization and quantum state sharing in irregular complex network. arXiv:1606.08113

  28. Marquardt, F., Girvin, S.M.: Optomechanics. Physics 2, 40 (2009)

    Article  Google Scholar 

  29. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014)

    Article  ADS  Google Scholar 

  30. Wang, G., Huang, L., Lai, Y.C., Grebogi, C.: Nonlinear dynamics and quantum entanglement in optomechanical systems. Phys. Rev. Lett. 112, 110406 (2014)

    Article  ADS  Google Scholar 

  31. Chan, J., et al.: Laser cooling of a nanomechanical oscillator into its quantum ground state. Nature 478, 89–92 (2011)

    Article  ADS  Google Scholar 

  32. Verhagen, E., Deléglise, S., Weis, S., Schliesser, A., Kippenberg, T.J.: Quantum-coherent coupling of a mechanical oscillator to an optical cavity mode. Nature 482, 63–67 (2012)

    Article  ADS  Google Scholar 

  33. Zhang, W.Z., Cheng, J., Liu, J.Y., Zhou, L.: Controlling photon transport in the single-photon weak-coupling regime of cavity optomechanics. Phys. Rev. A 91, 063836 (2015)

    Article  ADS  Google Scholar 

  34. Zhang, Y., Zhang, J., Yu, C.S.: Photon statistics on the extreme entanglement. Sci. Rep. 6, 24098 (2016)

    Article  ADS  Google Scholar 

  35. Cheng, J., Zhang, W.Z., Zhou, L., Zhang, W.: Preservation macroscopic entanglement of optomechanical systems in non-Markovian environment. Sci. Rep. 6, 23678 (2016)

    Article  ADS  Google Scholar 

  36. Mari, A., Eisert, J.: Gently modulating optomechanical systems. Phys. Rev. Lett. 103, 213603 (2009)

    Article  ADS  Google Scholar 

  37. Farace, A., Giovannetti, V.: Enhancing quantum effects via periodic modulations in optomechanical systems. Phys. Rev. A 86, 013820 (2012)

    Article  ADS  Google Scholar 

  38. Lü, L., et al.: Determination of configuration matrix element and outer synchronization among networks with different topologies. Physica A 461, 833–839 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  39. Lü, L., Chen, L.S., Bai, S.Y., Li, G.: A new synchronization tracking technique for uncertain discrete network with spatiotemporal chaos behaviors. Physica A 460, 314–325 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  40. Sun, H.J., Cao, H.J.: Synchronization of two identical and non-identical Rulkov models. Commun. Nonlinear Sci. Numer. Simul. 40, 15–27 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  41. Shepelev, I.A., Slepnev, A.V., Vadivasova, T.E.: Different synchronization characteristics of distinct types of traveling waves in a model of active medium with periodic boundary conditions. Commun. Nonlinear Sci. Numer. Simul. 38, 206–217 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  42. Zhang, K., Chen, W., Bhattacharya, M., Meystre, P.: Hamiltonian chaos in a coupled BEC-optomechanical-cavity system. Phys. Rev. A 81, 013802 (2010)

    Article  ADS  Google Scholar 

  43. Yasir, K.A., Liu, W.M.: Tunable bistability in hybrid Bose-Einstein condensate optomechanics. Sci. Rep. 5, 10612 (2015)

    Article  ADS  Google Scholar 

  44. Horak, P., Barnett, S.M., Ritsch, H.: Coherent dynamics of Bose-Einstein condensates in high-finesse optical cavities. Phys. Rev. A 61, 033609 (2000)

    Article  ADS  Google Scholar 

  45. Vitali, D., et al.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007)

    Article  ADS  Google Scholar 

  46. Gardiner, C.W., Zoller, P.: Quantum Noise. Chapter 3. Springer, Berlin (2000). Please check and confirm the book title for reference [46] is correct

    Book  MATH  Google Scholar 

  47. Giovannetti, V., Vitali, D.: Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion. Phys. Rev. A 63, 023812 (2001)

    Article  ADS  Google Scholar 

  48. Buchmann, L.F., Wright, E.M., Meystre, P.: Phase conjugation in quantum optomechanics. Phys. Rev. A 88, 041801(R) (2013)

    Article  ADS  Google Scholar 

  49. Weiss, T., Kronwald, A., Marquardt, F.: Noise-induced transitions in optomechanical synchronization. New. J. Phys. 18, 013043 (2016)

    Article  ADS  Google Scholar 

  50. Bakemeier, L., Alvermann, A., Fehske, H.: Route to Chaos in optomechanics. Phys. Rev. Lett. 114, 013601 (2015)

    Article  ADS  Google Scholar 

  51. Lü, L., Li, C., Li, G., Sun, A., Yan, Z., Rong, T., Gao, Y.: Synchronization transmission of laser pattern signal within uncertain switched network. Commun. Nonlinear. Sci. Numer. Simulat. 47, 267 (2017)

    Article  ADS  Google Scholar 

  52. Lü, X.Y., Jing, H., Ma, J.Y., Wu, Y.: PT-symmetry-breaking chaos in optomechanics. Phys. Rev. Lett. 114, 253601 (2015)

    Article  ADS  Google Scholar 

  53. Lü, L., Li, C.R., Chen, L.S.: Projective synchronization of the small world delayed network with uncertainty. Nonlinear Dyn. 76, 1633 (2014)

    Article  ADS  Google Scholar 

  54. Galve, F., Giorgi, G.L., Zambrini, R.: Quantum correlations and synchronization measures. arXiv:1610.05060

  55. Lü, L., Li, C.R., Chen, L.S., Zhao, G.N.: New technology of synchronization for the uncertain dynamical network with the switching topology. Nonlinear Dyn. 86(1), 655–666 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  56. Schultz, P., et al.: Tweaking synchronization by connectivity modifications. Phys. Rev. E 93, 062211 (2016)

    Article  ADS  Google Scholar 

  57. Mahata, S., Das, S., Gupte, N.: Synchronization in area-preserving maps: effects of mixed phase space and coherent structures. Phys. Rev. E 93, 062212 (2016)

    Article  ADS  Google Scholar 

  58. Ludwig, M., Kubala, B., Marquardt, F.: The optomechanical instability in the quantum regime. New J. Phys. 10, 095013 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

All authors thank Jiong Cheng, Wenzhao Zhang and Yang Zhang for the useful discussion. This research was supported by the National Natural Science Foundation of China (Grant Nos. 11574041 and 11175033) and the Fundamental Research Funds for the Central Universities (DUT13LK05).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chong Li.

Appendices

Appendix

Simplification of the Bose-Einstein condensate Hamiltonian

The total Hamiltonian corresponding to such a system can be expressed as \(\hat{H}=\hat{H}_\mathrm{{c}}+\hat{H}_\mathrm{{a}}+\hat{H}_\mathrm{{d}}\), where

$$\begin{aligned} \begin{aligned} \hat{H}_\mathrm{{c}}=\hbar \omega _\mathrm{{c}}\hat{a}^\dagger \hat{a}-\hbar {g}_0\hat{a}^\dagger \hat{a}\hat{q}+\dfrac{\hbar \omega _\mathrm{{m}}}{2}\left( \hat{p}^2+\hat{q}^2\right) +i\hbar E(\hat{a}^\dagger e^{-i\omega _\mathrm{{p}}t}-\hat{a}e^{i\omega _\mathrm{{p}}t}) \end{aligned} \end{aligned}$$
(10)

is the standard Hamiltonian of optomechanical system with the radiation pressure term \(\hbar {g}_0\hat{a}^\dagger \hat{a}\hat{q}\) [28, 29]. \(\hat{H}_\mathrm{{a}}\) describes the BEC and its interaction with the light field and correspondingly, \(H_\mathrm{{d}}\) denotes the Hamiltonian of the thermal reservoir which hence to dissipation. In Eq. (1), \(\hat{a}\) (\(\hat{a^{\dagger }}\)) is the bosonic annihilation (creation) operator for the optical cavity field, \(\hat{q}\) (\(\hat{p}\)) is the position (momentum) operator for the oscillator. \(\omega _\mathrm{{c}}\), \(\omega _\mathrm{{p}}\) and \(\omega _\mathrm{{m}}\) are the intrinsic frequencies of the cavity field, pump field and the oscillator, respectively. \(g_0\) is the single-photon coupling coefficient satisfying \(g_0=(\omega _\mathrm{{c}}/L)\sqrt{\hbar /m\omega _\mathrm{{m}}}\), where L and m are the cavity length and the oscillator mass, respectively [28]. E is the driving intensity of the pump field. In the rotating frame, \(\hat{H}_\mathrm{{c}}\) is given explicitly by

$$\begin{aligned} \begin{aligned} \hat{H}_\mathrm{{c}}=-\hbar \Delta _\mathrm{{c}}\hat{a}^\dagger \hat{a}-\hbar {g}_0\hat{a}^\dagger \hat{a}\hat{q}+\dfrac{\hbar \omega _\mathrm{{m}}}{2}\left( \hat{p}^2+\hat{q}^2\right) +i\hbar E(\hat{a}^\dagger -\hat{a}), \end{aligned} \end{aligned}$$
(11)

via introducing cavity-pump detuning \(\Delta _\mathrm{{c}}=\omega _\mathrm{{p}}-\omega _\mathrm{{c}}\).

The BEC trapped in a cavity optomechanical system can be simplified as a one-dimensional motion model. Previous works have proved that the internal excited state dynamic of the atom can be adiabatically eliminated if the light-atom detuning \(\Delta _\mathrm{{a}}\) is large enough [44]. Here, we assume that the atom spontaneous emission can be ignored, in addition, two-body interaction can also be neglected if atomic density is low enough. Therefore, \(\hat{H}_\mathrm{{a}}\) becomes [42]

$$\begin{aligned} \begin{aligned} \hat{H}_\mathrm{{a}}=\int \hat{\Psi }^{\dagger }(x)\left( -\dfrac{\hbar ^2}{2m_\mathrm{{a}}}\dfrac{{\text{ d }}^2}{{\text{ d }}x^2}+\hbar U_0\hat{a}^\dagger \hat{a}\cos ^2 kx\right) \hat{\Psi }(x){\text{ d }}x, \end{aligned} \end{aligned}$$
(12)

where \(\hat{\Psi }(x)\) (\(\hat{\Psi }^{\dagger }(x)\)) is a bosonic field annihilation (creation) operator and \(m_\mathrm{{a}}\) is the atomic mass. In this expression, \(U_0\) is the far off-resonant vacuum Rabi frequency and \(k=\omega _\mathrm{{p}}/c\) is the wave number of the light field. Here, we consider the optical field is so weak that the momentum side modes of the BEC are generated at \(\pm 2\hbar k\). Then, the field operator \(\hat{\Psi }(x)\) can be expanded as

$$\begin{aligned} \begin{aligned} \hat{\Psi }(x)\simeq [\hat{c}_0+\sqrt{2}\cos (2kx)\hat{c}_2]/\sqrt{L}. \end{aligned} \end{aligned}$$
(13)

Here, the bosonic annihilation operators \(\hat{c_0}\) and \(\hat{c_2}\) are, respectively, the zero-momentum state and side-mode component. By substituting Eq. (13) into Eq. (12) and finishing the integral, the Hamiltonian \(\hat{H}_\mathrm{{a}}\) can be simplified as

$$\begin{aligned} \begin{aligned} \hat{H}'_\mathrm{{a}}=\dfrac{\hbar U_0}{2}\hat{a}^\dagger \hat{a}\left( \hat{c}^\dagger _0\hat{c}_0+\hat{c}^\dagger _2\hat{c}_2\right) +\dfrac{\sqrt{2}\hbar U_0}{4}\hat{a}^\dagger \hat{a}\left( \hat{c}^\dagger _0\hat{c}_2+\hat{c}^\dagger _2\hat{c}_0\right) +4\hbar \omega _\mathrm{{r}}\hat{c}^\dagger _2\hat{c}_2, \end{aligned} \end{aligned}$$
(14)

where \(\omega _\mathrm{{r}}=\hbar k^2/2 m_\mathrm{{a}}\) is the effective frequency and \(\hat{c}^\dagger _0\hat{c}_0\) (\(\hat{c}^\dagger _2\hat{c}_2\)) is the corresponding particle number operator of the zero-momentum mode (the side mode). Here, we assume that \(\hat{c}^\dagger _0\hat{c}_0=N-\hat{c}^\dagger _2\hat{c}_2\), i.e., the particle loss is ignored and the population of zero-momentum mode is far greater than that of the side mode. If N is large enough, the zero-momentum mode can be regarded as a classical field, i.e., \(\hat{c}_0\) and \(\hat{c}^\dagger _0\) are thought as the c-numbers \(\sqrt{N}\). With this condition, Eq. (14) becomes

$$\begin{aligned} \begin{aligned} \hat{H}'_\mathrm{{a}}=\dfrac{\hbar U_0N}{2}\hat{a}^\dagger \hat{a}+\dfrac{\sqrt{2N}\hbar U_0}{4}\hat{a}^\dagger \hat{a}\left( \hat{c}_2+\hat{c}^\dagger _2\right) +4\hbar \omega _\mathrm{{r}}\hat{c}^\dagger _2\hat{c}_2, \end{aligned} \end{aligned}$$
(15)

and the total Hamiltonian of the system can be gained

$$\begin{aligned} \hat{H}_\mathrm{{c}}= & {} -\hbar \Delta \hat{a}^\dagger \hat{a}-\hbar {g}_0\hat{a}^\dagger \hat{a}\hat{q}+\dfrac{\hbar \omega _\mathrm{{m}}}{2}\left( \hat{p}^2+\hat{q}^2\right) +i\hbar E(\hat{a}^\dagger -\hat{a})\nonumber \\&\quad +4\hbar \omega _\mathrm{{r}}\hat{c}^\dagger _2\hat{c}_2-\hbar g_\mathrm{{sm}}\hat{a}^\dagger \hat{a}\hat{Q}. \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, W., Li, C. & Song, H. Quantum synchronization of chaotic oscillator behaviors among coupled BEC–optomechanical systems. Quantum Inf Process 16, 80 (2017). https://doi.org/10.1007/s11128-017-1517-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1517-y

Keywords

Navigation