Skip to main content
Log in

Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose quantum information processing schemes based on cavity quantum electrodynamics (QED) for quantum communication. First, to generate entangled states (Bell and Greenberger–Horne–Zeilinger [GHZ] states) between flying photons and three-level atoms inside optical cavities, we utilize a controlled phase flip (CPF) gate that can be implemented via cavity QED). Subsequently, we present an entanglement swapping scheme that can be realized using single-qubit measurements and CPF gates via optical cavities. These schemes can be directly applied to construct an entanglement channel for a communication system between two users. Consequently, it is possible for the trust center, having quantum nodes, to accomplish the linked channel (entanglement channel) between the two separate long-distance users via the distribution of Bell states and entanglement swapping. Furthermore, in our schemes, the main physical component is the CPF gate between the photons and the three-level atoms in cavity QED, which is feasible in practice. Thus, our schemes can be experimentally realized with current technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing. In: Proceedings of the IEEE International Conference on Computers. Syst. Signal Process. 175 (1984)

  2. Hong, C.H., Heo, J., Khym, G.L., Lim, J.I., Hong, S.K., Yang, H.J.: N quantum channels are sufficient for multi-user quantum key distribution protocol between n users. Opt. Commun. 283, 2644 (2010)

    Article  ADS  Google Scholar 

  3. Sun, Z., Huang, J., Wang, P.: Efficient multiparty quantum key agreement protocol based on commutative encryption. Quantum Inf. Process. 15, 2101 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Bostrom, K., Felbinger, F.: Deterministic secure direct communication using entanglement. Phys. Rev. Lett. 89, 187902 (2002)

    Article  ADS  Google Scholar 

  5. Liu, Z., Chen, H., Liu, W., Xu, J., Wang, D., Li, Z.: Quantum secure direct communication with optimal quantum superdense coding by using general four-qubit states. Quantum Inf. Process. 12, 587 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Heo, J., Hong, C.H., Lee, D.H., Yang, H.J.: Bidirectional transfer of quantum information for unknown photons via cross-Kerr nonlinearity and photon-number-resolving measurement. Chin. Phys. B 25, 020306 (2016)

    Article  Google Scholar 

  7. Tan, X., Zhang, X.: Controlled quantum secure direct communication by entanglement distillation or generalized measurement. Quantum Inf. Process. 15, 2137 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Zeng, G.H., Keitel, C.H.: Arbitrated quantum-signature scheme. Phys. Rev. A 65, 042312 (2002)

    Article  ADS  Google Scholar 

  9. Gao, F., Qin, S.J., Guo, F.Z., Wen, Q.Y.: Cryptanalysis of the arbitrated quantum signature protocols. Phys. Rev. A 84, 022344 (2011)

    Article  ADS  Google Scholar 

  10. Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Quantum signature scheme using a single qubit rotation operator. Int. J. Theor. Phys. 54, 614 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  11. Heo, J., Hong, C.H., Lim, J.I., Yang, H.J.: Bidirectional quantum teleportation of unknown photons using path-polarization intra-particle hybrid entanglement and controlled-unitary gates via cross-Kerr nonlinearity. Chin. Phys. B 24, 050304 (2015)

    Article  ADS  Google Scholar 

  12. Messamah, J., Schroeck Jr., F.E., Hachemane, M., Smida, A., Hamici, A.H.: Quantum mechanics on phase space and teleportation. Quantum Inf. Process. 14, 1035 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Heo, J., Kang, M.S., Hong, C.H., Yang, H., Choi, S.G.: Discrete quantum Fourier transform using weak cross-Kerr nonlinearity and displacement operator and photon-number-resolving measurement under the decoherence effect. Quantum Inf. Process. 15, 4955 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  14. Briegel, H.J., Dur, W., Cirac, J.I., Zoller, P.: Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932 (1998)

    Article  ADS  Google Scholar 

  15. Halder, M., Beveratos, A., Gisin, N., Scarani, V., Simon, C., Zbinden, H.: Entangling independent photons by time measurement. Nature (London) 3, 692 (2007)

    ADS  Google Scholar 

  16. Zukowski, M., Zeilinger, A., Horne, M.A., Ekert, A.K.: “Event-ready-detectors” Bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287 (1993)

    Article  ADS  Google Scholar 

  17. Lukin, M.D., Yelin, S.F., Fleischhauer, M.: Entanglement of atomic ensembles by trapping correlated photon states. Phys. Rev. Lett. 84, 4232 (2000)

    Article  ADS  Google Scholar 

  18. Zhao, B., Chen, Z.B., Chen, Y.A., Schmiedmayer, J., Pan, J.W.: Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007)

    Article  ADS  Google Scholar 

  19. Chen, Z.B., Zhao, B., Chen, Y.A., Schmiedmayer, J., Pan, J.W.: Fault-tolerant quantum repeater with atomic ensembles and linear optics. Phys. Rev. A 76, 022329 (2007)

    Article  ADS  Google Scholar 

  20. Sangouard, N., Simon, C., Zhao, B., Chen, Y.A., Riedmatten, H.D., Pan, J.W., Gisin, N.: Robust and efficient quantum repeaters with atomic ensembles and linear optics. Phys. Rev. A 77, 062301 (2008)

    Article  ADS  Google Scholar 

  21. Mirza, I.M., van Enk, S.J., Kimble, H.J.: Single-photon time-dependent spectra in coupled cavity arrays. J. Opt. Soc. Am. B 30, 2640 (2013)

    Article  ADS  Google Scholar 

  22. Loock, P.V., Ladd, T.D., Sanaka, K., Yamaguchi, F., Nemoto, K., Munro, W.J., Yamamoto, Y.: Hybrid quantum repeater using bright coherent light. Phys. Rev. Lett. 96, 240501 (2006)

    Article  Google Scholar 

  23. Munro, W.J., Meter, R.V., Sebastien, G.R.L., Nemoto, K.: High-bandwidth hybrid quantum repeater. Phys. Rev. Lett. 101, 040502 (2008)

    Article  ADS  Google Scholar 

  24. Childress, L., Taylor, J.M., Sørensen, A.S., Lukin, M.D.: Fault-tolerant quantum repeaters with minimal physical resources and implementations based on single-photon emitters. Phys. Rev. A 72, 052330 (2005)

    Article  ADS  Google Scholar 

  25. Childress, L., Taylor, J.M., Sørensen, A.S., Lukin, M.D.: Fault-tolerant quantum communication based on solid-state photon emitters. Phys. Rev. Lett. 96, 070504 (2006)

    Article  ADS  Google Scholar 

  26. Nemoto, K., Trupke, M., Devitt, S.J., Stephens, A.M., Scharfenberger, B., Buczak, K., Nobauer, T., Everitt, M.S., Schmiedmayer, J., Munro, W.J.: Photonic architecture for scalable quantum information processing in diamond. Phys. Rev. X 4, 031022 (2014)

    Google Scholar 

  27. Waks, E., Vuckovic, J.: Dipole induced transparency in drop-filter cavity-waveguide systems. Phys. Rev. Lett. 96, 153601 (2006)

    Article  ADS  Google Scholar 

  28. Simon, C., Niquet, Y.M., Caillet, X., Eymery, J., Poizat, J.P., Gerard, J.M.: Quantum communication with quantum dot spins. Phys. Rev. B 75, 081302(R) (2007)

    Article  ADS  Google Scholar 

  29. Gao, W.B., Fallahi, P., Togan, E., Miguel-Sanchez, J., Imamoglu, A.: Observation of entanglement between a quantum dot spin and a single photon. Nature (London) 491, 426 (2012)

    Article  ADS  Google Scholar 

  30. Greve, K.D., Yu, L., McMahon, P.L., Pelc, J.S., Natarajan, C.M., Kim, N.Y., Abe, E., Maier, S., Schneider, C., Kamp, M., Hofling, S., Hadfield, R.H., Forchel, A., Fejer, M.M., Yamamoto, Y.: Quantum-dot spin-photon entanglement via frequency downconversion to telecom wavelength. Nature (London) 491, 421 (2012)

    Article  ADS  Google Scholar 

  31. Schaibley, J.R., Burgers, A.P., McCracken, G.A., Duan, L.M., Berman, P.R., Steel, D.G., Bracker, A.S., Gammon, D., Sham, L.J.: Demonstration of quantum entanglement between a single electron spin confined to an InAs quantum dot and a photon. Phys. Rev. Lett. 110, 167401 (2013)

    Article  ADS  Google Scholar 

  32. Li, T., Yang, G.J., Deng, F.G.: Heralded quantum repeater for a quantum communication network based on quantum dots embedded in optical microcavities. Phys. Rev. A 93, 012302 (2016)

    Article  ADS  Google Scholar 

  33. Sangouard, N., Dubessy, R., Simon, C.: Quantum repeaters based on single trapped ions. Phys. Rev. A 79, 042340 (2009)

    Article  ADS  Google Scholar 

  34. Duan, L.M., Lukin, M.D., Cirac, J.I., Zoller, P.: Long-distance quantum communication with atomic ensembles and linear optics. Nature (London) 414, 413 (2001)

    Article  ADS  Google Scholar 

  35. Chou, C.W., Laurat, J., Deng, H., Choi, K.S., Riedmatten, H.D., Felinto, D., Kimble, H.J.: Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316 (2007)

    Article  ADS  Google Scholar 

  36. Chen, S., Chen, Y.A., Zhao, B., Yuan, Z.S., Schmiedmayer, J., Pan, J.W.: Demonstration of a stable atom-photon entanglement source for quantum repeaters. Phys. Rev. Lett. 99, 180505 (2007)

    Article  ADS  Google Scholar 

  37. Yin, Z.Q., Zhao, Y.B., Yang, Y., Zou, C.L., Han, Z.F., Guo, G.C.: A scheme of quantum repeaters with single atom and cavity-QED. Opt. Commun. 283, 617 (2010)

    Article  ADS  Google Scholar 

  38. Han, Y., He, B., Heshami, K., Li, C.Z., Simon, C.: Quantum repeaters based on Rydberg-blockade-coupled atomic ensembles. Phys. Rev. A 81, 052311 (2010)

    Article  ADS  Google Scholar 

  39. Sangouard, N., Simon, C., Riedmatten, H.D., Gisin, N.: Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33 (2011)

    Article  ADS  Google Scholar 

  40. Li, T., Deng, F.G.: Heralded high-efficiency quantum repeater with atomic ensembles assisted by faithful single-photon transmission. Sci. Rep. 5, 15610 (2015)

    Article  ADS  Google Scholar 

  41. Duan, L.M., Kimble, H.J.: Scalable photonic quantum computation through cavity-assisted interactions. Phys. Rev. Lett. 92, 127902 (2004)

    Article  ADS  Google Scholar 

  42. Lin, X.M., Zhou, Z.W., Ye, M.Y., Xiao, Y.F., Guo, G.C.: One-step implementation of a multiqubit controlled-phase-flip gate. Phys. Rev. A 73, 012323 (2006)

    Article  ADS  Google Scholar 

  43. Xiao, Y.F., Lin, X.M., Gao, J., Yang, Y., Han, Z.F., Guo, G.C.: Realizing quantum controlled phase flip through cavity QED. Phys. Rev. A 70, 042314 (2004)

    Article  ADS  Google Scholar 

  44. Duan, L.M., Wang, B., Kimble, H.J.: Robust quantum gates on neutral atoms with cavity-assisted photon scattering. Phys. Rev. A 72, 032333 (2005)

    Article  ADS  Google Scholar 

  45. Deng, Z.J., Zhang, X.L., Wei, H., Gao, K.L., Feng, M.: Implementation of a nonlocal N-qubit conditional phase gate by single-photon interference. Phys. Rev. A 76, 044305 (2007)

    Article  ADS  Google Scholar 

  46. Mirza, I.M.: Controlling tripartite entanglement among optical cavities by reservoir engineering. J. Mod. Opt. 62, 1048 (2015)

    Article  ADS  Google Scholar 

  47. Deng, Z.J., Feng, M., Gao, K.L.: Preparation of entangled states of four remote atomic qubits in decoherence-free subspace. Phys. Rev. A 75, 024302 (2007)

    Article  ADS  Google Scholar 

  48. Song, J., Xia, Y., Song, H.S.: Quantum nodes for W-state generation in noisy channels. Phys. Rev. A 78, 024302 (2008)

    Article  ADS  Google Scholar 

  49. Mirza, I.M.: Bi- and uni-photon entanglement in two-way cascaded fiber-coupled atom-cavity systems. Phys. Lett. A 379, 1643 (2015)

    Article  ADS  MATH  Google Scholar 

  50. Yang, C.P., Su, Q.P., Han, S.: Generation of Greenberger-Horne-Zeilinger entangled states of photons in multiple cavities via a superconducting qutrit or an atom through resonant interaction. Phys. Rev. A 86, 022329 (2012)

    Article  ADS  Google Scholar 

  51. Xia, Y., Kang, Y.H., Lu, P.M.: Complete polarized photons Bell-states and Greenberger-Horne-Zeilinger-states analysis assisted by atoms. J. Opt. Soc. Am. B 31, 2077 (2014)

    Article  ADS  Google Scholar 

  52. Zhang, J.L., Su, S.L., Zhang, S., Zhu, A.D., Wang, H.F.: Complete and nondestructive polarization-entangled cluster state analysis assisted by a cavity input-output process. J. Opt. Soc. Am. B 33, 342 (2016)

    Article  ADS  Google Scholar 

  53. Xiong, W., Ye, L.: Optimal real state quantum cloning machine in cavity quantum electrodynamics. J. Opt. Soc. Am. B 28, 2260 (2011)

    Article  ADS  Google Scholar 

  54. Fang, B.L., Wu, T., Ye, L.: Realization of a general quantum cloning machine via cavity-assisted interaction. Europhys. Lett. 97, 60002 (2012)

    Article  ADS  Google Scholar 

  55. Cirac, J.I., Zoller, P., Kimble, H.J., Mabuchi, H.: Quantum state transfer and entanglement distribution among distant nodes in a quantum network. Phys. Rev. Lett. 78, 3221 (1997)

    Article  ADS  Google Scholar 

  56. Zhou, X.F., Zhang, Y.S., Guo, G.C.: Nonlocal gate of quantum network via cavity quantum electrodynamics. Phys. Rev. A 71, 064302 (2005)

    Article  ADS  Google Scholar 

  57. Mirza, I.M., van Enk, S.J.: How nonlinear optical effects degrade Hong-Ou-Mandel like interference. Opt. Commun. 343, 172 (2015)

    Article  ADS  Google Scholar 

  58. Maunz, P., Puppe, T., Schuster, I., Syassen, N., Pinkse, P.W.H., Rempe, G.: Normal-mode spectroscopy of a single-bound-atom-cavity system. Phys. Rev. Lett. 94, 033002 (2005)

    Article  ADS  Google Scholar 

  59. Boozer, A.D., Boca, A., Miller, R., Northup, T.E., Kimble, H.J.: Cooling to the ground state of axial motion for one atom strongly coupled to an optical cavity. Phys. Rev. Lett. 97, 083602 (2006)

    Article  ADS  Google Scholar 

  60. Mey, F., Yu, Y.F., Feng, X.L., Zhu, S.L., Zhang, Z.M.: Optical quantum computation with cavities in the intermediate coupling region. Europhys. Lett. 91, 10001 (2010)

    Article  ADS  Google Scholar 

  61. Gehr, R., Volz, J., Dubois, G., Steinmetz, T., Colombe, Y., Lev, B.L., Long, R., Estève, J., Reichel, J.: Cavity-based single atom preparation and high-fidelity hyperfine state readout. Phys. Rev. Lett. 104, 203602 (2010)

    Article  ADS  Google Scholar 

  62. Hunger, D., Steinmetz, T., Colombe, Y., Deutsch, C., Haensch, T.W., Reichel, J.: A fiber Fabry-Perot cavity with high finesse. New J. Phys. 12, 065038 (2010)

    Article  ADS  Google Scholar 

  63. Li, T., Yang, G.J., Deng, F.G.: Entanglement distillation for quantum communication network with atomic-ensemble memories. Opt. Express 22, 23897 (2014)

    Article  ADS  Google Scholar 

  64. Englund, D., Faraon, A., Fushman, I., Stoltz, N., Petroff, P., Vučković, J.: Controlling cavity reflectivity with a single quantum dot. Nature (London) 450, 857 (2007)

    Article  ADS  Google Scholar 

  65. Fushman, I., Englund, D., Faraon, A., Stoltz, N., Petroff, P.: Controlled phase shifts with a single quantum dot. Science 320, 769 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) Grant funded by the Korea government (MSIP) (No. NRF-2015R1A2A2A03004152).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seong-Gon Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Heo, J., Kang, MS., Hong, CH. et al. Schemes generating entangled states and entanglement swapping between photons and three-level atoms inside optical cavities for quantum communication. Quantum Inf Process 16, 24 (2017). https://doi.org/10.1007/s11128-016-1459-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-016-1459-9

Keywords

Navigation