Skip to main content
Log in

The creation of quantum correlation and entropic uncertainty relation in photonic crystals

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the dynamic creation of quantum correlation and entropic uncertainty relation (EUR) in a system of two non-interacting qubits, which are initially prepared in a classically correlated state and subject to the independent radiation in an isotropic or anisotropic photonic bandgap (PBG) crystal environment. It is shown that the detuning condition and environmental structure play a crucial role in controlling the emergence of geometric quantum discord (GQD) and one-norm GQD. In addition, the remarkable similarities and differences for quantum correlation in two PBG environments are also analyzed in detail. Finally, we explore the time evolution of EUR in our model under the influence of PBG environment and present some interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  4. Knill, E., Laflamme, R.: Power of one bit of quantum information. Phys. Rev. Lett. 81, 5672 (1998)

    Article  ADS  Google Scholar 

  5. Datta, A., Flammia, S.T., Caves, C.M.: Entanglement and the power of one qubit. Phys. Rev. A 72, 042316 (2005)

    Article  ADS  Google Scholar 

  6. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  7. Datta, A.: Quantum discord between relatively accelerated observers. Phys. Rev. A 80, 052304 (2009)

    Article  ADS  Google Scholar 

  8. Li, J.-Q., Liang, J.-Q.: Quantum and classical correlations in a classical dephasing environment. Phys. Lett. A 375, 1496 (2011)

    Article  ADS  MATH  Google Scholar 

  9. Madhok, V., Datta, A.: Interpreting quantum discord through quantum state merging. Phys. Rev. A 83, 032323 (2011)

    Article  ADS  Google Scholar 

  10. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666 (2012)

    Article  Google Scholar 

  11. Streltsov, A., Kampermann, H., Bruß, D.: Quantum cost for sending entanglement. Phys. Rev. Lett. 108, 250501 (2012)

    Article  ADS  Google Scholar 

  12. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  13. Luo, S.: Using measurement-induced disturbance to characterize correlations as classical or quantum. Phys. Rev. A 77, 022301 (2008)

    Article  ADS  Google Scholar 

  14. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  MATH  Google Scholar 

  15. Spehner, D., Orszag, M.: Geometric quantum discord with Bures distance. New J. Phys. 15, 103001 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through the Schatten 1-norm. Phys. Rev. A 87, 064101 (2013)

    Article  ADS  Google Scholar 

  17. Giorgia, G.L., Roncaglia, M., Raffa, F.A., Genovese, M.: Quantum correlation dynamics in photosynthetic processes assisted by molecular vibrations. Ann. Phys. 361, 72 (2015)

    Article  MathSciNet  Google Scholar 

  18. Wu, W., Luo, D.-W., Xu, J.-B.: Double sudden transitions of geometric discord at finite-temperature in the framework of stochastic description. J. Appl. Phys. 115, 244906 (2014)

    Article  ADS  Google Scholar 

  19. Paula, F.M., et al.: Observation of Environment-Induced double sudden transitions in geometric quantum correlations. Phys. Rev. Lett. 111, 250401 (2013)

    Article  ADS  Google Scholar 

  20. Eremeev, V., Ciobanu, N., Orszag, M.: Thermal effects on sudden changes and freezing of correlations between remote atoms in a cavity quantum electrodynamics network. Opt. Lett. 39, 2668 (2014)

    Article  ADS  Google Scholar 

  21. Benedetti, C., Buscemi, F., Bordone, P., Paris, M.G.A.: Dynamics of quantum correlations in colored-noise environments. Phys. Rev. A 87, 052328 (2013)

    Article  ADS  Google Scholar 

  22. Karmakar, S., Sen, A., Bhar, A., Sarkar, D.: Effect of local filtering on freezing phenomena of quantum correlation. Quantum Inf. Process 14, 2517 (2015)

    Article  ADS  MATH  Google Scholar 

  23. Wang, J.C., Jing, J.L., Fan, H.: Quantum discord and measurement-induced disturbance in the background of dilaton black holes. Phys. Rev. D 90, 025032 (2014)

    Article  ADS  Google Scholar 

  24. Qiang, W.-C., Zhang, L.: Geometric measure of quantum discord for entanglement of Dirac fields in noninertial frames. Phys. Lett. B 742, 383 (2015)

    Article  ADS  Google Scholar 

  25. Yang, W.-L., An, J.-H., Zhang, C.-J., Chen, C.-Y., Oh, C.H.: Dynamics of quantum correlation between separated nitrogen-vacancy centers embedded in plasmonic waveguide. Sci. Rep. 5, 15513 (2015)

    Article  ADS  Google Scholar 

  26. Mazzola, L., Piilo, J., Maniscalco, S.: Sudden transition between classical and quantum decoherence. Phys. Rev. Lett. 104, 200401 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  27. Cianciaruso, M., Bromley, T.R., Roga, W., Franco, R.L., Adesso, G.: Universal freezing of quantum correlations within the geometric approach. Sci. Rep. 5, 10177 (2015)

    Article  ADS  Google Scholar 

  28. Chanda, T., Pal, A.K., Biswas, A., Sen(De), A., Sen, U.: Freezing of quantum correlations under local decoherence. Phys. Rev. A 91, 062119 (2015)

    Article  ADS  Google Scholar 

  29. Xu, J.-S., et al.: Experimental investigation of classical and quantum correlations under decoherence. Nat. Commun. 1, 7 (2010)

    ADS  Google Scholar 

  30. Auccaise, R., et al.: Environment-Induced sudden transition in quantum discord dynamics. Phys. Rev. Lett. 107, 140403 (2011)

    Article  ADS  Google Scholar 

  31. Rong, X., et al.: Experimental protection and revival of quantum correlation in open solid systems. Phys. Rev. B 88, 054419 (2013)

    Article  ADS  Google Scholar 

  32. Streltsov, A., Kampermann, H., Bruß, D.: Behavior of quantum correlations under local noise. Phys. Rev. Lett. 107, 170502 (2011)

    Article  ADS  Google Scholar 

  33. Hu, X., Gu, Y., Gong, Q., Guo, G.: Necessary and sufficient condition for Markovian-dissipative-dynamics-induced quantum discord. Phys. Rev. A 84, 022113 (2011)

    Article  ADS  Google Scholar 

  34. Hu, X., Fan, H., Zhou, D.L., Liu, W.-M.: Necessary and sufficient conditions for local creation of quantum correlation. Phys. Rev. A 85, 032102 (2012)

    Article  ADS  Google Scholar 

  35. Guo, Y., Hou, J.: Necessary and sufficient conditions for local creation of quantum discord. J. Phys. A Math. Theor. 46, 155301 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Ciccarello, F., Giovannetti, V.: Creating quantum correlations through local nonunitary memoryless channels. Phys. Rev. A 85, 010102(R) (2012)

    Article  ADS  Google Scholar 

  37. Gessner, M., Laine, E.-M., Breuer, H.-P., Piilo, J.: Correlations in quantum states and the local creation of quantum discord. Phys. Rev. A 85, 052122 (2012)

    Article  ADS  Google Scholar 

  38. Campbell, S., et al.: Propagation of nonclassical correlations across a quantum spin chain. Phys. Rev. A 84, 052316 (2011)

    Article  ADS  Google Scholar 

  39. Gwóźdź, M., Jakóbczyk, L.: Spontaneous emission can locally create quantum discord out of classical correlations. Quantum Inf. Process. 13, 171 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  40. Lanyon, B.P., Jurcevic, P., Hempel, C., Gessner, M., Vedral, V., Blatt, R., Roos, C.F.: Experimental generation of quantum discord via noisy processes. Phys. Rev. Lett. 111, 100504 (2013)

    Article  ADS  Google Scholar 

  41. Auccaise, R., et al.: Experimentally witnessing the quantumness of correlations. Phys. Rev. Lett. 107, 070501 (2011)

    Article  ADS  Google Scholar 

  42. Orieux, A., Ciampini, M.A., Mataloni, P., Bruß, D., Rossi, M., Macchiavello, C.: Experimental generation of robust entanglement from classical correlations via local dissipation. Phys. Rev. Lett. 115, 160503 (2015)

    Article  ADS  Google Scholar 

  43. Prevedel, R., Hamel, D.R., Colbeck, R., Fisher, K., Resch, K.J.: Experimental investigation of the uncertainty principle in the presence of quantum memory and its application to witnessing entanglement. Nat. Phys. 7, 757 (2011)

    Article  Google Scholar 

  44. Li, C.-F., Xu, J.-S., Xu, X.-Y., Li, K., Guo, G.-C.: Experimental investigation of the entanglement assisted entropic uncertainty principle. Nat. Phys. 7, 752 (2011)

    Article  Google Scholar 

  45. Tomamichel, M., Renner, R.: Uncertainty relation for smooth entropies. Phys. Rev. Lett. 106, 110506 (2011)

    Article  ADS  Google Scholar 

  46. Tomamichel, M., Lim, C.C.W., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012)

    Article  ADS  Google Scholar 

  47. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631 (1983)

    Article  ADS  MathSciNet  Google Scholar 

  48. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  49. Heisenberg, W.: Über den anschaulichen Inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43, 172 (1927)

    Article  ADS  Google Scholar 

  50. Karpat, G., Piilo, J., Maniscalco, S.: Controlling entropic uncertainty bound through memory effects. Europhys. Lett. 111, 50006 (2015)

    Article  ADS  Google Scholar 

  51. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659 (2010)

    Article  Google Scholar 

  52. Yablonovitch, E., Gmitter, T.J., Leung, K.M.: Photonic band structure: the face-centered-cubic case employing nonspherical atoms. Phys. Rev. Lett. 67, 2295 (1991)

    Article  ADS  Google Scholar 

  53. John, S.: Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987)

    Article  ADS  Google Scholar 

  54. Lewenstein, M., Zakrzewski, J., Mossberg, T.W.: Spontaneous emission of atoms coupled to frequency-dependent reservoirs. Phys. Rev. A 38, 808 (1988)

    Article  ADS  Google Scholar 

  55. Wu, Y., Wang, J., Mo, M., Zhang, H.Z.: Entanglement manipulation by atomic position in photonic crystals. Opt. Commun. 356, 74 (2015)

    Article  ADS  Google Scholar 

  56. Berrada, K.: Protecting the precision of estimation in a photonic crystal. J. Opt. Soc. Am. B 32, 571 (2015)

    Article  ADS  Google Scholar 

  57. Huang, J.-H., Chen, Z.-Y., Yu, T.-B., Deng, X.-H., Liu, J.-T., Liu, N.-H.: Dynamics of three-qubit entanglement in photonic crystals. Phys. Rev. A 85, 014301 (2012)

    Article  ADS  Google Scholar 

  58. Bellomo, B., LoFranco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  59. Montealegre, J.D., Paula, F.M., Saguia, A., Sarandy, M.S.: One-norm geometric quantum discord under decoherence. Phys. Rev. A 87, 042115 (2013)

    Article  ADS  Google Scholar 

  60. Ciccarello, F., Tufarelli, T., Giovannetti, V.: Toward computability of trace distance discord. New J. Phys. 16, 013038 (2014)

    Article  ADS  Google Scholar 

  61. Li, J.-Q., Cui, X.-L., Liang, J.-Q.: The dynamics of quantum correlation with two controlled qubits under classical dephasing environment. Ann. Phys. 354, 365 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  62. Białynicki-Birula, I., Mycielski, J.: Uncertainty relations for information entropy in wave mechanics. Comm. Math. Phys. 44, 129 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  63. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  64. Renes, J.M., Boileau, J.-C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  65. Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, p. 931. Academic Press, New York (1980)

    MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China under Grants Nos. 11105087, 61275210, 11275118, 11404198 and Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (STIP) under Grant No. 2014102.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Qi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bai, XM., Wang, N., Li, JQ. et al. The creation of quantum correlation and entropic uncertainty relation in photonic crystals. Quantum Inf Process 15, 2771–2784 (2016). https://doi.org/10.1007/s11128-016-1299-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-016-1299-7

Keywords

Navigation