Skip to main content
Log in

The transport character of quantum state in one-dimensional coupled-cavity arrays: effect of the number of photons and entanglement degree

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The transport properties of the photons injected into one-dimensional coupled-cavity arrays (CCAs) are studied. It is found that the number of photons cannot change the evolution cycle of the system and the time points at which W states and NOON state are obtained with a relatively higher probability. Transport dynamics in the CCAs exhibits that entanglement-enhanced state transmission is more effective phenomenon, and we show that for a quantum state with the maximum concurrence, it can be transmitted completely without considering the case of photon loss.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Illuminati, F.: Quantum optics: light does matter. Nat. Phys. 2, 803–804 (2006)

    Article  Google Scholar 

  2. Greentree, A.D., Tahan, C., Cole, J.H., Hollenberg, C.L.: Quantum phase transitions of light. Nat. Phys. 2, 856–861 (2006)

    Article  Google Scholar 

  3. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Strongly interacting polaritons in coupled arrays of cavities. Nat. Phys. 2, 849–855 (2006)

    Article  Google Scholar 

  4. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Effective spin systems in coupled microcavities. Phys. Rev. Lett. 99, 160501 (2007)

    Article  ADS  Google Scholar 

  5. Hartmann, M.J., Brandao, F.G.S.L., Plenio, M.B.: Quantum many-body phenomena in coupled cavity arrays. Laser Photon. Rev. 2, 527 (2008)

    Article  Google Scholar 

  6. Tomadin, A., Fazio, R.: Many-body phenomena in QED-cavity arrays. J. Opt. Soc. Am. B 27(6), A130–A136 (2010)

    Article  ADS  Google Scholar 

  7. Houck, A.A., Tureci, H.E., Koch, J.: On-chip quantum simulation with superconducting circuits. Nat. Phys. 8, 292–299 (2012)

    Article  Google Scholar 

  8. Schmidt, S., Koch, J.: Circuit QED lattices: towards quantum simulation with superconducting circuits. Ann. Phys. 525, 395–412 (2013)

    Article  Google Scholar 

  9. Almeida, G.M.A., Souza, A.M.C.: Quantum transport with coupled cavities on an Apollonian network. Phys. Rev. A 87, 033804 (2013)

    Article  ADS  Google Scholar 

  10. Lombardo, F., Ciccarello, F., Palma, G.M.: Photon localization versus population trapping in a coupled-cavity array. Phys. Rev. A 89, 053826 (2014)

    Article  ADS  Google Scholar 

  11. Angelakis, D.G., Santos, M.F., Bose, S.: Photon-blockade-induced Mott transitions and XY spin models in coupled cavity arrays. Phys. Rev. A 76, 031805(R) (2007)

    Article  ADS  Google Scholar 

  12. Zhou, L., Lu, J., Sun, C.P.: Coherent control of photon transmission: slowing light in a coupled resonator waveguide doped with \(\Lambda \) atoms. Phys. Rev. A 76, 012313 (2007)

    Article  ADS  Google Scholar 

  13. Hu, F.M., Zhou, L., Shi, T., Sun, C.P.: Coupled cavity QED for coherent control of photon transmission: green-function approach for hybrid systems with two-level doping. Phys. Rev. A 76, 013819 (2007)

    Article  ADS  Google Scholar 

  14. Zhou, L., Gao, Y.B., Song, Z., Sun, C.P.: Coherent output of photons from coupled superconducting transmission line resonators controlled by charge qubits. Phys. Rev. A 77, 013831 (2008)

    Article  ADS  Google Scholar 

  15. Ogden, C.D., Irish, E.K., Kim, M.S.: Dynamics in a coupled-cavity array. Phys. Rev. A 78, 063805 (2008)

    Article  ADS  Google Scholar 

  16. Makin, M.I., Cole, J.H., Hill, C.D., Greentree, A.D., Hollenberg, L.C.L.: Time evolution of the one-dimensional Jaynes-Cummings-Hubbard Hamiltonian. Phys. Rev. A 80, 043842 (2009)

    Article  ADS  Google Scholar 

  17. Bose, S., Angelakis, D.G., Burgarth, D.: Transfer of a polaritonic qubit through a coupled cavity array. J. Mod. Opt. 54, 2307–2314 (2007)

    Article  ADS  MATH  Google Scholar 

  18. Quach, J., Makin, M.I., Su, C.H., Greentree, A.D., Hollenberg, L.C.L.: Band structure, phase transitions, and semiconductor analogs in one-dimensional solid light systems. Phys. Rev. A 80, 063838 (2009)

    Article  ADS  Google Scholar 

  19. Paternostro, M., Agarwal, G.S., Kim, M.S.: Solitonic behaviour in coupled multi atom-cavity systems. New J. Phys. 11, 013059 (2009)

    Article  ADS  Google Scholar 

  20. Longo, P., Schmitteckert, P., Busch, K.: Few-photon transport in low-dimensional systems: interaction-induced radiation trapping. Phys. Rev. Lett. 104, 023602 (2010)

    Article  ADS  Google Scholar 

  21. Gong, Z.R., Ian, H., Zhou, L., Sun, C.P.: Controlling quasibound states in a one-dimensional continuum through an electromagnetically-induced-transparency mechanism. Phys. Rev. A 78, 053806 (2008)

    Article  ADS  Google Scholar 

  22. Shi, T., Sun, C.P.: Lehmann-Symanzik-Zimmermann reduction approach to multiphoton scattering in coupled-resonator arrays. Phys. Rev. B 79, 205111 (2009)

    Article  ADS  Google Scholar 

  23. Liao, J.Q., Gong, Z.R., Zhou, L., Liu, Y.X., Sun, C.P., Nori, F.: Controlling the transport of single photons by tuning the frequency of either one or two cavities in an array of coupled cavities. Phys. Rev. A 81, 042304 (2010)

    Article  ADS  Google Scholar 

  24. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-level system. Phys. Rev. Lett. 111, 103604 (2013)

    Article  ADS  Google Scholar 

  25. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    Article  ADS  Google Scholar 

  26. Rai, A., Agarwal, G.S., Perk, J.H.H.: Transport and quantum walk of nonclassical light in coupled waveguides. Phys. Rev. A 78, 042304 (2008)

    Article  ADS  Google Scholar 

  27. Guruprasad, K., Ramij, R.: Local cloning of multipartite entangled states. Quantum Inf. Process. 11, 711–727 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11574022 and 11174024) and the Open Fund of IPOC (BUPT) Grant No. IPOC2013B007, also supported by the Open Project Program of State Key Laboratory of Low-Dimensional Quantum Physics (Tsinghua University) Grant No. KF201407, and Beijing Higher Education (Young Elite Teacher Project) YETP 1141 and the Fundamental Research Funds for the Central Universities of Beihang University (Grant No. YWF-15-WLXY-013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Feng Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, SQ., Zhang, GF. The transport character of quantum state in one-dimensional coupled-cavity arrays: effect of the number of photons and entanglement degree. Quantum Inf Process 15, 1499–1512 (2016). https://doi.org/10.1007/s11128-015-1214-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1214-7

Keywords

Navigation