Skip to main content
Log in

Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper the geometry of two- and three-qubit states under local unitary groups is discussed. We first review the one-qubit geometry and its relation with Riemannian sphere under the action of group SU(2). We show that the quaternionic stereographic projection intertwines between local unitary group \(SU(2)\otimes SU(2)\) and quaternionic Möbius transformation. The invariant term appearing in this operation is related to concurrence measure. Yet, there exists the same intertwining stereographic projection for much more global group Sp(2), generalizing the familiar Bloch sphere in two-level systems. Subsequently, we introduce octonionic stereographic projection and octonionic conformal map (or octonionic Möbius maps) for three-qubit states and find evidence that they may have invariant terms under local unitary operations which shows that both maps are entanglement sensitive.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Varadarajan, V.S.: Geometry of Quantum Theory. University of California, Los Angeles (2000)

    Google Scholar 

  2. Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, New York (2006)

    MATH  Google Scholar 

  3. Chruscinski, D., Kossakowski, A.: Geometry of quantum states: new construction of positive maps. Phys. Lett. A 373, 2301–2305 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Schirmer, S.G., Zhang, T., Leahy, J.V.: Orbits of quantum states and geometry of Bloch vectors for N-level systems. J. Phys. A Math. Gen. 37, 1389–1402 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Lévay, P.: The geometry of entanglement: metrics, connections and the geometric phase. J. Phys. A Math. Gen. 37, 1821–1841 (2004)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  6. Lévay, P.: On the geometry of four-qubit invariants. J. Phys. A Math. Gen. 39, 9533–9545 (2006)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  7. Lévay, P.: Geometry of three-qubit entanglement. Phys. Rev. A 71, 012334 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  9. Mäkelä, H., Messina, A.: N-qubit states as points on the Bloch sphere. Phys. Scr. T140, 014054 (2010)

    Article  ADS  Google Scholar 

  10. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 833 (1998)

    MathSciNet  Google Scholar 

  11. Kimura, G., Kossakowski, A.: The Bloch-vector space for n-level systems: the spherical-coordinate point of view. Open Syst. Inf. Dyn. 12, 207–229 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kimura, G.: The Bloch vector for N-level systems. Phys. Lett. A 314, 339–349 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Mosseri, R., Dandoloff, R.: Geometry of entangled states, Bloch spheres and Hopf fibrations. J. Phys. A Math. Gen. 34, 10243–10252 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Bernevig, B.A., Chen, H.D.: Geometry of the three-qubit state, entanglement and division algebras. J. Phys. A Math. Gen. 36, 8325 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Najarbashi, G., Ahadpour, S., Fasihi, M.A., Tavakoli, Y.: Geometry of a two-qubit state and intertwining quaternionic conformal mapping under local unitary transformations. J. Phys. A Math. Theor. 40, 6481–6489 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Lee, J.W., Kim, C.H., Lee, E.K., Kim, J., Lee, S.: Qubit geometry and conformal mapping. Quantum Inf. Process. 1, 129–134 (2002)

    Article  MathSciNet  Google Scholar 

  17. De Leo, S., Ducati, G.C.: Quaternionic groups in physics. Int. J. Theor. Phys. 38, 2197–2220 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Aslaksen, H.: Quaternionic determinants. Math. Intell. 18, 57–65 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Harvey, F.R.: Spinors and Calibrations. Academic Press, New York (1990)

    MATH  Google Scholar 

  20. Adler, S.L.: Quaternionic Quantum Mechanics and Quantum Fields. Oxford University Press, New York (1995)

    MATH  Google Scholar 

  21. Francesco, P.D., Mathieu, P., Śenéchal, D.: Conformal Field Theory. Springer, Berlin (1996)

    MATH  Google Scholar 

  22. Fernandez, J.M., Schneeberger, W.A.: Quaternionic computing. Preprint. quant-ph/0307017 (2003)

  23. De Leo, S., Scolarici, G.: Right eigenvalue equation in quaternionic quantum mechanics. J. Phys. A Math. Gen. 33, 2971 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  25. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1–8 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  27. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333–339 (1997)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Horodecki, R., Horodecki, P., Horodecki, M.: Violating Bell inequality by mixed spin-1/2 states: necessary and sufficient condition. Phys. Lett. A 200, 340–344 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  29. Horodecki, R., Horodecki, P., Horodecki, M.: Quantum \(\alpha \)-entropy inequalities: independent condition for local realism? Phys. Lett. A 210, 377–381 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Heydari, H.: The geometry and topology of entanglement: conifold, segre variety, and hopf fibration. Quantum Inf. Comput. 6, 400–409 (2006)

    MathSciNet  MATH  Google Scholar 

  31. Heydari, H.: General pure multipartite entangled states and the Segre variety. J. Phys. A Math. Gen. 39, 9839 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)

    MATH  Google Scholar 

  33. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  34. Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. J. Phys. A Math. Gen. 38, 6777–6784 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

Download references

Acknowledgments

The authors also acknowledge the support from the Mohaghegh Ardabili University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Najarbashi.

Appendices

Appendix 1: Quaternion and octonion

The quaternion skew-field \({\mathbb {Q}}\) is an associative algebra of rank 4 on real number \({\mathbb {R}}\) whose every element can be written as

$$\begin{aligned} q=\sum \limits _{i = 0}^3 {{x_i}{e_i}} ,\quad \quad {x_i} \in {\mathbb {R}}, \end{aligned}$$
(5.1)

where \(e_{0}=1\) and \(e_{1},e_{2},e_{3}\) satisfy

$$\begin{aligned}&e_{1}^{2}=e_{2}^{2}=e_{3}^{2}=-1, \quad e_{1}e_{2}=-e_{2}e_{1}=e_{3}, \quad e_{2}e_{3}=-e_{3}e_{2}=e_{1},\nonumber \\&\quad e_{3}e_{1}=-e_{1}e_{3}=e_{2}. \end{aligned}$$
(5.2)

It can also be defined equivalently, using the complex numbers \(z_{1}=x_{0}+x_{1}e_{1}\) and \(z_{2}=x_{2}+x_{3}e_{1} \) in the form \(q=z_{1}+z_{2}e_{2} \) endowed with an involutory anti-automorphism (conjugation) such as

$$\begin{aligned} q=z_{1}+z_{2}e_{2} \in {{\mathbb {C}}}\oplus {{\mathbb {C}}}e_{2}\ \longrightarrow \ \bar{q}=x_{0}-\sum \limits _{i = 1}^3 {{x_i}{e_i}}=\bar{z}_{1}-z_{2}e_{2}. \end{aligned}$$
(5.3)

Note that quaternion multiplication is non-commutative so that \(\overline{q_{1}q_{2}}={\overline{q_{2}}}\ {\overline{q_{1}}}\) and \( e_{2}z=\bar{z}e_{2}\). On the other hand, a two-dimensional quaternionic vector space V defines a four-dimensional complex vector space \({{\mathbb {C}}}V\) by forgetting scalar multiplication by non-complex quaternions (i.e., those involving \(e_{2}\)). Roughly speaking, if V has quaternionic dimension 2, with basis \(|0\rangle _{q},|1\rangle _{q}\), then \({{\mathbb {C}}}V\) has complex dimension 4, with basis \(\{|00\rangle ,|01\rangle ,|10\rangle ,|11\rangle \}\).

The octonionic skew-field \({\mathbb {O}}\) is neither commutative nor associative algebra of rank 8 over \({\mathbb {R}}\) whose every element can be written as

$$\begin{aligned} o=\sum \limits _{i = 0}^7 {{x_i}{e_i}}, \quad {x_i} \in {\mathbb {R}}, \quad {e_0} = 1\quad \mathrm {and} \quad e_i^2 = - 1\; (i = 1,\ldots ,7). \end{aligned}$$
(5.4)

The multiplication of octonion is given by

$$\begin{aligned} {e_i}{e_j} = - {\delta _{ij}}{e_0} + \sum \limits _{k = 1}^7 {{f_{ijk}}{e_k}} \quad \mathrm {for} \; i,j = 1,2,\ldots ,7, \end{aligned}$$
(5.5)

where the \({f_{ijk}}\) are totally anti-symmetric in ij, and k with values \(1, 0,-1\) just as Levi-Civita symbol. Moreover, \(f_{ijk} = +1\) for \(ijk= 123, 145, 246, 347,617, 725,536\). We can depict this fact graphically as in Fig. 3 where the multiplication role can be read from orientation of arrows, for example:

$$\begin{aligned} e_{1}e_{2}=e_{3} , \quad \quad e_{2}e_{4}=e_{6} , \quad \quad e_{7}e_{2}=e_{5}. \end{aligned}$$
(5.6)
Fig. 3
figure 3

Multiplication rule for octonion

The complex conjugate of a octonion is given by

$$\begin{aligned} {\bar{o}}=x_{0}-\sum \limits _{i = 1}^7 {{x_i}{e_i}}. \end{aligned}$$
(5.7)

Any octonion number can be represented in terms of four complex number \(z_{0}=x_{0}+x_{1}e_{1}\), \( z_{1}=x_{2}+x_{3}e_{1}\), \(z_{2}=x_{4}+x_{5}e_{1}\) and \(z_{3}=x_{6}+x_{7}e_{1}\) as

$$\begin{aligned} o=z_{0}+z_{1}e_{2}+(z_{3}+z_{3}e_{2})e_{4}, \end{aligned}$$
(5.8)

and it’s complex conjugate is given by

$$\begin{aligned} {\bar{o}}={\bar{z}}_{0}-z_{1}e_{2}-(z_{3}+z_{3}e_{2})e_{4}, \end{aligned}$$
(5.9)

or equivalently, in terms of quaternion numbers \(q_{1}=z_{0}+z_{1}e_{2}\) and \(q_{2}=z_{2}+x_{3}e_{2} \), we can write

$$\begin{aligned} o&=q_{1}+q_{2}e_{4}, \nonumber \\ {\bar{o}}&=\bar{q}_{1}-q_{2}e_{4}. \end{aligned}$$
(5.10)

The multiplication of two octonions

$$\begin{aligned} o_{1}&=z_{0}+z_{1}e_{2}+(z_{3}+z_{3}e_{2})e_{4},\nonumber \\ o_{2}&=p_{0}+p_{1}e_{2}+(p_{3}+p_{3}e_{2})e_{4}, \end{aligned}$$
(5.11)

using the multiplication rule of \(e_{i}\), is an octonion

$$\begin{aligned} o_{3}=o_{1}o_{2}=s_{0}+s_{1}e_{2}+(s_{3}+s_{3}e_{2})e_{4} , \end{aligned}$$
(5.12)

where \(s_{i}, i=0,1,2,3\) are complex numbers and are given by

$$\begin{aligned} s_{0}&=z_{0}p_{0}-z_{1}\bar{p}_{1}-z_{2}\bar{p}_{2}-{\bar{z}}_{3}p_{3}, \nonumber \\ s_{1}&=z_{0}p_{1}+z_{1}\bar{p}_{0}+{\bar{z}}_{2} p_{3}- z_{3}\bar{p}_{2}, \nonumber \\ s_{2}&=z_{0}p_{2}-{\bar{z}}_{1} p_{3}+z_{2} \bar{p}_{0}+ z_{3}\bar{p}_{1}, \nonumber \\ s_{3}&={\bar{z}}_{0} p_{3}+ z_{1} p_{2}-z_{2} \bar{p}_{1}+ z_{3}\bar{p}_{0}. \end{aligned}$$
(5.13)

Every nonzero (\(p\in {\mathbb {Q}}\) or \({\mathbb {O}}\)) is invertible, and the unique inverse is given by \(p^{-1}=\frac{1}{|p|^2}\bar{p}\) where the quaternion or octonionic norm |p| is defined by \( |p|^2=p\bar{p}.\) The norm of two quaternions or octonions \(p_{1}\) and \(p_{2}\) satisfies \( |p_{1}p_{2}| = |p_{2}p_{1}| = |p_{1}||p_{2}|.\) Note that octonion multiplication is non-commutative and non-associative that is \((o_{1}o_{2})o_{3}\ne o_{1}(o_{2}o_{3})\). On the other hand, a two-dimensional octonionic vector space V defines a four-dimensional quaternionic vector space \({\mathbb {Q}}V\) by forgetting scalar multiplication by octonion (i.e., those involving \(e_{4}\)). Roughly speaking if V has octonionic dimension 2, with basis \(\{|0\rangle _{o},|1\rangle _{0}\}\), then \({\mathbb {Q}}V\) has quaternion dimension 4, with basis \(\{|00\rangle _{q},|01\rangle _{q},|10\rangle _{q},|11\rangle _{q}\}\) and \({{\mathbb {C}}}V\) has complex dimension 8, with basis \(\{|000\rangle ,|001\rangle ,|010\rangle ,|011\rangle ,|100\rangle ,|101\rangle ,|110\rangle ,|111\rangle \}\).

Appendix 2: Calculating

In this appendix, we calculate the terms appearing in the main commutative diagram related to three-qubit pure state.

Calculating \({\mathcal {P}}{\mathcal {O}}{\mathcal {Q}}B|\psi \rangle \)

It is convenient to start with the first statement in Eq. (4.21),

$$\begin{aligned} {\mathcal {P}}{\mathcal {O}}{\mathcal {Q}}B|\psi \rangle ={\mathcal {P}}{\mathcal {O}}{\mathcal {Q}}|\psi \rangle '={\mathcal {P}}{\mathcal {O}}|\psi \rangle '_{q}={\mathcal {P}}|\psi \rangle '_{o} , \end{aligned}$$
(5.14)

where \(|\psi \rangle '_{o}=o'_{1}|0\rangle _{o}+o'_{2}|1\rangle _{o}\) and \(o'_{1}\) and \(o'_{2}\) are results of the action of local unitary transformation \(B=A_{1}\otimes A_{2}\otimes A_{3}\) on the general three-qubit pure state (4.1) followed by the map \({\mathcal {O}}{\mathcal {Q}}\) as

$$\begin{aligned} { o}'_{1}= & {} t_{0}'+t_{1}'e_{2}+(t_{2}'+t_{3}'e_{2})e_{4}\nonumber \\= & {} (t_{0}{a_{1}}{a_{2}}{a_{3}}+t_{1}{a_{1}}{a_{2}}{b_{3}} +t_{2}{a_{1}}{b_{2}}\bar{a_{3}}+t_{3}{a_{1}}{b_{2}}{b_{3}} +t_{4}{b_{1}}{a_{2}}{a_{3}}\nonumber \\&+\,t_{5}{b_{1}}{a_{2}}{b_{3}} +t_{6}{b_{1}}{b_{2}}{a_{3}}+t_{7}{b_{1}}{b_{2}}{b_{3}})\nonumber \\&+\,(-t_{0}{a_{1}}\bar{a_{2}}\bar{b_{3}}+t_{1}{a_{1}}\bar{a_{2}}\bar{a_{3}} -t_{2}{a_{1}}{b_{2}}\bar{b_{3}}+t_{3}{a_{1}}{b_{2}}\bar{a_{3}} -t_{4}{b_{1}}\bar{a_{2}}\bar{b_{3}}\nonumber \\&+\,t_{5}{b_{1}}{a_{2}}{a_{3}} -t_{6}{b_{1}}{b_{2}}\bar{b_{3}}+t_{7}{b_{1}}{b_{2}}\bar{a_{3}})e_{2}\nonumber \\&+\,(-t_{0}{a_{1}}\bar{b_{2}}{a_{3}}-t_{1}{a_{1}}\bar{b_{2}}{b_{3}} +t_{2}{a_{1}}\bar{a_{2}}{a_{3}}+t_{3}{a_{1}}\bar{a_{2}}{b_{3}} -t_{4}{b_{1}}\bar{b_{2}}{a_{3}}\nonumber \\&-\,t_{5}\bar{b_{1}}\bar{b_{2}}\bar{b_{3}} +t_{6}{b_{1}}\bar{a_{2}}{a_{3}}+t_{7}{b_{1}}\bar{a_{2}}{b_{3}})e_{4}\nonumber \\&+\,([t_{0}{a_{1}}{b_{2}}\bar{b_{3}}-t_{1}{a_{1}}\bar{b_{2}}\bar{a_{3}} -t_{2}{a_{1}}\bar{a_{2}}\bar{b_{3}}+t_{3}{a_{1}}\bar{a_{2}}\bar{a_{3}} +t_{4}{b_{1}}{b_{2}}\bar{b_{3}}\nonumber \\&-\,t_{5}{b_{1}}\bar{b_{2}}\bar{a_{3}} -t_{6}{b_{1}}\bar{a_{2}}\bar{b_{3}} +t_{7}{b_{1}}\bar{a_{2}}\bar{a_{3}}]e_{2})e_{4},\end{aligned}$$
(5.15)
$$\begin{aligned} { o}'_{2}= & {} t_{4}'+t_{5}'e_{2}+(t_{6}'+t_{7}'e_{2})e_{4} \nonumber \\= & {} (-t_{0}\bar{b_{1}}{a_{2}}{a_{3}}-t_{1}\bar{b_{1}}{a_{2}}{b_{3}} -t_{2}\bar{b_{1}}{b_{2}}{a_{3}}-t_{3}\bar{b_{1}}{b_{2}}{b_{3}}+t_{4}\bar{a_{1}}{a_{2}}{a_{3}}\nonumber \\&+\,t_{5}\bar{a_{1}}{a_{2}}{b_{3}}+t_{6}\bar{a_{1}}{b_{2}}{a_{3}}+t_{7}\bar{a_{1}}{b_{2}}{b_{3}})\nonumber \\&+\,(t_{0}\bar{b_{1}}\bar{a_{2}}\bar{b_{3}}-t_{1}\bar{b_{1}}\bar{a_{2}}\bar{a_{3}}+t_{2}\bar{b_{1}}{b_{2}}\bar{b_{3}} -t_{3}\bar{b_{1}}r{b_{2}}\bar{a_{3}}-t_{4}\bar{a_{1}}\bar{a_{2}}\bar{b_{3}}\nonumber \\&+\,t_{5}\bar{a_{1}}\bar{a_{2}}\bar{a_{3}}-t_{6}\bar{a_{1}}{b_{2}}\bar{b_{3}}+t_{7}\bar{a_{1}}{b_{2}}\bar{a_{3}})e_{2}\nonumber \\&+\,(t_{0}\bar{b_{1}}\bar{b_{2}}{a_{3}}+t_{1}\bar{b_{1}}\bar{b_{2}}{b_{3}}-t_{2}\bar{b_{1}}\bar{a_{2}}{a_{3}}-t_{3}\bar{b_{1}}\bar{a_{2}}{b_{3}}-t_{4}\bar{a_{1}}\bar{b_{2}}{a_{3}}\nonumber \\&-\,t_{5}\bar{a_{1}}\bar{b_{2}}{b_{3}}+t_{6}\bar{a_{1}}\bar{a_{2}}{a_{3}}+t_{7}\bar{a_{1}}\bar{a_{2}}{b_{3}})e_{4}\nonumber \\&+\,([t_{0}\bar{b_{1}}\bar{b_{2}}\bar{b_{3}}+t_{1}\bar{b_{1}}\bar{b_{2}}\bar{a_{3}}+t_{2}\bar{b_{1}}\bar{a_{2}}\bar{b_{3}}-t_{3}\bar{b_{1}}\bar{a_{2}}\bar{a_{3}} +t_{4}\bar{a_{1}}\bar{b_{2}}\bar{b_{3}}\nonumber \\&-\,t_{5}\bar{a_{1}}\bar{b_{2}}\bar{a_{3}}-t_{6}\bar{a_{1}}\bar{a_{2}}\bar{b_{3}}+t_{7}\bar{a_{1}}\bar{a_{2}}\bar{a_{3}}]e_{2})e_{4}, \end{aligned}$$
(5.16)

According to the relation \({\mathcal {O}}|\psi \rangle '_{o}=({\mathcal {O}}B){\mathcal {O}}|\psi \rangle _{o}\), the \(o'_{1}\) and \(o'_{2}\) can be factorized as

$$\begin{aligned} o'_{1}&=a_{1}\left[ \{o_{1}{\mathcal {A}}_{3}^{(q)}\}{\mathcal {A}}_{2}^{(o)}\right] +b_{1}\left[ \left\{ o_{2}{\mathcal {A}}_{3}^{(q)}\right\} {\mathcal {A}}_{2}^{(o)}\right] \ ,\nonumber \\ o'_{2}&=-\bar{b}_{1}\left[ \left\{ o_{1}{\mathcal {A}}_{3}^{(q)}\right\} {\mathcal {A}}_{2}^{(o)}\right] +\bar{a}_{1} \left[ \left\{ o_{2}{\mathcal {A}}_{3}^{(q)}\right\} {\mathcal {A}}_{2}^{(o)}\right] , \end{aligned}$$
(5.17)

where \({\mathcal {A}}_{3}^{(q)}\) and \({\mathcal {A}}_{2}^{(o)}\) are quaternion and octonionic form of unitary transformation \(A_{3}\) and \(A_{2}\), introduced in (3.9) and (4.18), respectively.

Calculating \({\mathcal {P}}{\mathcal {O}}({\mathbb {Q}}B){\mathcal {Q}}|\psi \rangle \)

We can proceed to another approach to understand more about three-qubit entangled pure state. Unlike in definition of \({\mathbb {Q}}B\), in order to correctly represent the complex transformation on the three-qubit pure state, the transformation B on the two-quaterbit should be represented by left action of the \(4 \times 4\) matrix \(A_{1} \otimes A_{2}\) and right multiplication with the quaternion \({\mathcal {A}}_{3}^{(q)}\) as in Eq. (4.17), hence applying the \({\mathbb {Q}}B\) on a two-quaterbit \(|\psi \rangle _{q}\) one can get

$$\begin{aligned} A_{1} \otimes A_{2}\left[ |\psi \rangle {\mathcal {A}}_{3}^{(q)}\right] =\left( {\begin{array}{*{20}{c}} {t{'_0} + t{'_1}{e_2}} \\ {t{'_2} + t{'_3}{e_2}} \\ {t{'_4} + t{'_5}{e_2}} \\ {t{'_6} + t{'_7}{e_2}} \end{array}} \right) , \end{aligned}$$
(5.18)

where \(t'_{0},\ldots ,t'_{7}\) are the same forms as in Eq. (5.15). It is clear that the operation \({\mathcal {O}}\) leads to Eq. (5.17), and hence the relevant part of the crucial diagram (the first quadrangle) is commutative, i.e.,

$$\begin{aligned} {\mathcal {O}}{\mathcal {Q}}B|\psi \rangle ={\mathcal {O}}({\mathbb {Q}}B){\mathcal {Q}}|\psi \rangle , \end{aligned}$$
(5.19)

and it is clear that applying the octonionic stereographic projection on the both side of the above equation lead to the first equality in Eq. (4.21).

Calculating \({\mathcal {P}}({\mathbb {O}}B){\mathcal {O}}{\mathcal {Q}}|\psi \rangle \)

We mentioned that the octonionic form of local unitary transformation should be represented by left action of the \(2 \times 2\) matrix \((A_{1}\in SU(2))\) and right multiplication with the octonion \({\mathcal {A}}_{3}^{(q)}, {\mathcal {A}}_{2}^{(o)}\) keeping in mind that the ordering is as Eq. (5.17). Now, applying the \(({\mathbb {O}}B)\) on a octabit one can get

$$\begin{aligned} {A_1}\left\{ \left[ | \psi \rangle _{o}{\mathcal {A}}_{3}^{(q)}\right] {\mathcal {A}}_{2}^{(o)}\right\} = \left( {\begin{array}{*{20}{c}} {{a_1}}&{}{b_{1}} \\ {-\bar{b_{1}}}&{}{{a_1}} \end{array}} \right) \left( {\begin{array}{*{20}{c}} {\{ {o_1}{\mathcal {A}}_{3}^{(q)}\}{\mathcal {A}}_{2}^{(o)}} \\ {\{ {o_2}{\mathcal {A}}_{3}^{(q)}\} {\mathcal {A}}_{2}^{(o)}} \end{array}} \right) =\left( {\begin{array}{*{20}{c}} {o{'_1}} \\ {o{'_2}} \end{array}} \right) , \end{aligned}$$
(5.20)

where \(o{'_1}\) and \(o{'_2}\) have the same forms as in Eq. (5.17). Altogether, we obtain

$$\begin{aligned} {\mathcal {O}}{\mathcal {Q}}({{\mathbb {C}}}B)|\psi \rangle ={\mathcal {O}}({\mathbb {Q}}B){\mathcal {Q}}|\psi \rangle =({\mathbb {O}}B){\mathcal {O}}{\mathcal {Q}}|\psi \rangle , \end{aligned}$$
(5.21)

Now, applying the octonionic stereographic projection \({\mathcal {P}}\) on above equation lead to the second equality in (4.21), or more precisely we have

$$\begin{aligned} {\mathcal {P}}(|\psi \rangle '_{o})=\frac{1}{|o'_{2}|^{2}}\left[ a_{1}b_{1}({\tilde{o}}_{2}\bar{{\tilde{o}}}_{2}-o_{1}{\bar{o}}_{1})+\left( a_{1}\frac{o_{1}\bar{{\tilde{o}}}_{2}}{|o_{2}|^{2}}a_{1}-b_{1}\frac{{{\tilde{o}}_{2}}{\bar{o}}_{1}}{|o_{2}|^{2}}b_{1}\right) \right] , \end{aligned}$$
(5.22)

where we used the relations \({\tilde{o}}_{2}\bar{{\tilde{o}}}_{2}-o_{1}{\bar{o}}_{1}=|o_{2}|^{2}(1-o{\bar{o}})\)) and \(o={\mathcal {P}}(|{\psi }\rangle _{o})=\frac{{\tilde{o}}_{1}\bar{{\tilde{o}}}_{2}}{|o_{2}|^{2}}\) to get

$$\begin{aligned} {\mathcal {P}}(o'_{1}|0\rangle _{o}+o'_{2}|1\rangle _{o})&=\frac{|o_{2}|^{2}}{|o'_{2}|^{2}}(a_{1}b_{1}(1-o{\bar{o}})+a_{1}oa_{1}-b_{1}{\bar{o}} b_{1}) \nonumber \\&=\frac{|o_{2}|^{2}}{|o'_{2}|^{2}}[S'_{0}+S'_{1}e_{2}+(S'_{2}+S'_{3}e_{2})e_{4}], \end{aligned}$$
(5.23)

where

$$\begin{aligned} S'_{0}&=[a_{1}b_{1}(1-|S_{0}|^2-|S_{1}|^2-|S_{2}|^2-|S_{3}|^2)+(a_{1}^{2}S_{0}-b_{1}^{2}\bar{S_{0}})+S_{1}e_{2},\nonumber \\ S'_{1}&=S_{1}\nonumber \\ S'_{2}&=S_{2}\nonumber \\ S'_{3}&=S_{3} \end{aligned}$$
(5.24)

and \(S_{0}, S_{1}, S_{2}\) and \(S_{3}\) are complex number that we introduce in (4.9).

Calculating \({\mathcal {F}}_{_{B}}{\mathcal {P}}{\mathcal {O}}{\mathcal {Q}}|\psi \rangle \)

So far we have shown that the first two equalities in Eq. (4.21) holds. We will henceforth focus on the role of octonionic Möbius transformation. Using the linear map \({\mathcal {Q}}\) and \({\mathcal {O}}\) together with octonionic stereographic projection \({\mathcal {P}}\) on a three-qubit pure state in Eq. (4.1) yields

$$\begin{aligned} {\mathcal {P}}{\mathcal {O}}{\mathcal {Q}}|\psi \rangle ={\mathcal {P}}{\mathcal {O}}|\psi \rangle _{q}={\mathcal {P}}|\psi \rangle _{o}={\tilde{o}}_{1}{\tilde{o}}^{-1}_{2}=\frac{1}{|o_{2}|^2 }(S_{0}+S_{1}e_{2}+(S_{2}+S_{3}e_{2})e_{4}). \end{aligned}$$
(5.25)

Furthermore, this point is mapped under the action of the octonionic Möbius transformation in Eq. (4.20) as follows

$$\begin{aligned}&{\mathcal {F}}_{B}\left( \frac{1}{|o_{2}|^2}(S_{0}+S_{1}e_{2}+(S_{2}+S_{3}e_{2})e_{4}\right) \nonumber \\&\quad = \frac{1}{|o_{2}|^2}\left[ a_{1}b_{1}(1-|S_{0}|^2-|S_{1}|^2-|S_{2}|^2 -|S_{3}|^2)+(a_{1}^{2}S_{0}-b_{1}^{2}\bar{S_{0}})\right. \nonumber \\&\left. \qquad +\,S_{1}e_{2}+(S_{2}e_{4}+S_{3}e_{2})e_{4})\right] \nonumber \\&\quad =\frac{1}{|o_{2}|^2}[S'_{0}+S'_{1}e_{2}+(S'_{2}e_{4}+S'_{3}e_{2})e_{4}], \end{aligned}$$
(5.26)

in which the term \(S_{1}e_{2}+S_{2}e_{4}+(S_{3}e_{2})e_{4}\) is invariant. Remembering that the entanglement between the first qubit and the last two qubits of the state (4.1) is given by concurrence measure (4.14), we have \(S_{1}=S_{2}=S_{3}=0\) for separable three-qubit states. For completeness we mention that the first qubit lives on the base space of the Hopf fibration while the other two-qubit lives on the fiber space of the Hopf map. On the other hand, since there is, in general, a symmetry in choosing the partitions of a three-qubit state, we could have started from \(|{\psi }\rangle _{2,(13)}\) or \(|{\psi }\rangle _{3,(12)}\) (instead of \(|{\psi }\rangle _{1,(23)}\)), and hence there are three kind of octonionification and subsequently three stereographic projections. Two others are

$$\begin{aligned}&|{\psi }\rangle _{o'}=m_{1}|{ 0 }\rangle _{o'}+m_{2}|{ 1 }\rangle _{o'}\nonumber \\&|{\psi }\rangle _{o''}=n_{1}|{ 0 }\rangle _{o''}+n_{2}|{ 1 }\rangle _{o''}, \end{aligned}$$
(5.27)

where \(m_{1}, m_{2}, n_{1}, n_{2}\) are octonion numbers

$$\begin{aligned}&m_{1}=t_{0}+t_{1}e_{2}+(t_{4}+ t_{5}e_{2})e_{4}, \nonumber \\&m_{2}=t_{2}+t_{3}e_{2}+(t_{6}+ t_{7}e_{2})e_{4}, \nonumber \\&n_{1}=t_{0}+t_{2}e_{2}+(t_{4}+ t_{6}e_{2})e_{4}, \nonumber \\&n_{2}=t_{1}+t_{3}e_{2}+(t_{5}+ t_{7}e_{2})e_{4}. \end{aligned}$$
(5.28)

Acting the stereographic projection \({\mathcal {P}}\) on two states \(|{\psi }\rangle _{o'}\) and \(|{\psi }\rangle _{o''}\) yields

$$\begin{aligned} M&=( t_{0}\bar{t_{2}}+ t_{1}\bar{t_{3}}+ t_{4}\bar{t_{6}}+ t_{3}\bar{t_{7}})+( t_{1}t_{2} - t_{0}t_{3}+\bar{t_{5}}\bar{t_{6}}-\bar{t_{4}}\bar{t_{7}})e_{2} \nonumber \\&\quad +\,[( t_{4}t_{2} - t_{0}t_{6}+\bar{t_{1}}\bar{t_{7}}-\bar{t_{5}}\bar{t_{3}})+( t_{4}t_{3} - t_{1}t_{6}+\bar{t_{5}}\bar{t_{2}}-\bar{t_{0}}\bar{t_{7}})e_{2}]e_{4} \nonumber \\ N&=( t_{0}\bar{t_{1 }}+ t_{2 }\bar{t_{3 }}+ t_{4 }\bar{t_{5 }}+ t_{6 }\bar{t_{7}})+( t_{2 }t_{1 } - t_{0}t_{3 }+\bar{t_{6 }}\bar{t_{5 }}-\bar{t_{4 }}\bar{t_{7}})e_{2} \nonumber \\&\quad +\,[( t_{4 }t_{1 } - t_{0}t_{5 }+\bar{t_{2 }}\bar{t_{7}}-\bar{t_{6 }}\bar{t_{3 }})+( t_{4 }t_{3 } - t_{2 }t_{5 }+\bar{t_{6 }}\bar{t_{1 }}-\bar{t_{0}}\bar{t_{7}})e_{2}]e_{4} \end{aligned}$$
(5.29)

respectively. Corresponding to each octonification there are concurrence measures which relate the entanglement between one-qubit with other two-qubit states, i.e.,

$$\begin{aligned} C^{2(13)}= & {} 2\left( |t_{0}t_{3}-t_{1}t_{2}|^{2}+|t_{0}t_{6}-t_{2}t_{4}|^{2}+|t_{0}t_{7}-t_{2}t_{5}|^{2}\right. \nonumber \\&\left. +\,|t_{1}t_{6}-t_{3}t_{4}|^{2}+|t_{1}t_{7}-t_{3}t_{5}|^{2}+|t_{4}t_{7}-t_{5}t_{6}|^{2}\right) ^{\frac{1}{2}},\nonumber \\ C^{3(12)}= & {} 2\left( |t_{0}t_{3}-t_{1}t_{2}|^{2}+|t_{0}t_{5}-t_{1}t_{4}|^{2}+|t_{0}t_{7}-t_{1}t_{6}|^{2}\right. \nonumber \\&\left. +\,|t_{2}t_{5}-t_{3}t_{4}|^{2}+|t_{2}t_{7}-t_{3}t_{6}|^{2}+|t_{4}t_{7}-t_{5}t_{6}|^{2}\right) ^{\frac{1}{2}}. \end{aligned}$$
(5.30)

According the above concurrence, the results M and N, which arise from projecting of the states \(|{\psi }\rangle _{o'}\) and \(|{\psi }\rangle _{o''}\), are also entanglement sensitive.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najarbashi, G., Seifi, B. & Mirzaei, S. Two- and three-qubit geometry, quaternionic and octonionic conformal maps, and intertwining stereographic projection. Quantum Inf Process 15, 509–528 (2016). https://doi.org/10.1007/s11128-015-1172-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1172-0

Keywords

Navigation