Skip to main content
Log in

Maximal noiseless code rates for collective rotation channels on qudits

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We study noiseless subsystems on collective rotation channels of qudits, i.e., quantum channels with operators in the set \(\mathcal {E}(d,n) = \{ U^{\otimes n}: U \in {\mathrm {SU}}(d)\}.\) This is done by analyzing the decomposition of the algebra \(\mathcal {A}(d,n)\) generated by \(\mathcal {E}(d,n)\). We summarize the results for the channels on qubits (\(d=2\)) and obtain the maximum dimension of the noiseless subsystem that can be used as the quantum error correction code for the channel. Then we extend our results to general d. In particular, it is shown that the code rate, i.e., the number of protected qudits over the number of physical qudits, always approaches 1 for a suitable noiseless subsystem. Moreover, one can determine the maximum dimension of the noiseless subsystem by solving a non-trivial discrete optimization problem. The maximum dimension of the noiseless subsystem for \(d = 3\) (qutrits) is explicitly determined by a combination of mathematical analysis and the symbolic software Mathematica.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Classical and quantum communication without a shared reference frame. Phys. Rev. Lett. 91, 027901 (2003)

    Article  ADS  Google Scholar 

  2. Bartlett, S.D., Rudolph, T., Spekkens, R.W.: Reference frames, superselection rules, and quantum information. Rev. Mod. Phys. 79, 555 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Barrett, S.D., Stace, T.M.: Fault tolerant quantum computation with very high threshold for loss errors. Phys. Rev. Lett. 105, 200502 (2010)

    Article  ADS  Google Scholar 

  4. Bishop, C.A., Byrd, M.S.: Methods for producing decoherence-free states and noiseless subsystems using photonic qutrits. Phys. Rev. A 77, 012314 (2008)

    Article  ADS  Google Scholar 

  5. Bishop, C.A., Byrd, M.S.: Compatible transformations for a qudit decoherence-free/noiseless encoding. J. Phys. A Math. Theor. 42, 055301 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  6. Bishop, C.A., Byrd, M.S., Wu, L.-A.: Casimir invariants for systems undergoing collective motion. Phys. Rev. A 83, 062327 (2011)

    Article  ADS  Google Scholar 

  7. Byrd, M.S.: Implications of qudit superselection rules for the theory of decoherence-free subsystems. Phys. Rev. A 73, 032330 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  8. Chen, J.Q., Ping, J., Wang, F.: Group Representation Theory for Physicists, 2nd edn. World Scientific, Singapore (2002)

    Book  MATH  Google Scholar 

  9. Cleve, R., Gottesman, D., Lo, H.-K.: How to share a quantum secret. Phys. Rev. Lett. 83, 648 (1999)

    Article  ADS  Google Scholar 

  10. Fulton, W., Harris, J.: Representation Theory A First Course. Springer, New York (2004)

    Google Scholar 

  11. Güngördü, U., Li, C.-K., Nakahara, M., Poon, Y.-T., Sze, N.-S.: Recursive encoding and decoding of the noiseless subsystem for qudits. Phys. Rev. A 89, 042301 (2014)

    Article  ADS  Google Scholar 

  12. Holbrook, J., Kribs, D., Laflamme, R., Poulin, D.: Noiseless subsystems for collective rotation channels in quantum information theory. Integr. Equ. Oper. Theory 51, 215–234 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. http://orion.math.iastate.edu/ytpoon/qecc6/qecc6_calculation

  14. Kempe, J., Bacon, D., Lidar, D.A., Whaley, K.B.: Theory of decoherence-free fault-tolerant universal quantum computation. Phys. Rev. A 63, 042307 (2001)

    Article  ADS  Google Scholar 

  15. Knill, E., Laflamme, R., Viloa, L.: Theory of quantum error correction for general noise. Phys. Rev. Lett. 84, 2525 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Kribs, D.W., Laflamme, R., Poulin, D., Lesosky, M.: Operator quantum error correction. Quantum Inf. Comput. 6, 382 (2006)

    MathSciNet  MATH  Google Scholar 

  17. Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S., Tomita, H.: Recursive encoding and decoding of noiseless subsystem and decoherence free subspace. Phys. Rev. A 84, 044301 (2011)

    Article  ADS  Google Scholar 

  18. Li, C.K., Nakahara, M., Poon, Y.T., Sze, N.S., Tomita, H.: Quantum error correction without measurement and an efficient recovery operation. Quantum Inf. Comput. 12, 149 (2012)

    MathSciNet  MATH  Google Scholar 

  19. Lider, D.A.: Decohelence-free subspaces, noiseless subsystems, and dynamical decoupling. Adv. Chem. Phys. 154, 295 (2014)

    Google Scholar 

  20. Lidar, D.A., Chuang, I.L., Whaley, K.B.: Decoherence free subspaces for quantum computation. Phys. Rev. Lett. 81, 2594 (1998)

    Article  ADS  Google Scholar 

  21. Migdał, P., Banaszek, K.: Immunity of information encoded in decoherence-free subspaces to particle loss. Phys. Rev. A 84, 052318 (2011)

    Article  ADS  Google Scholar 

  22. Muralidharan, S., Zou, C.-L., Li, L., Wen, J., Jiang, L.: Overcoming erasure errors with multilevel systems (2015). arXiv:1504.08054 [quant-ph]

  23. Nakahara, M., Ohmi, T.: Quantum Computing: From Linear Algebra to Physical Realizations. CRC Press, Boca Raton (2008)

    Book  Google Scholar 

  24. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  25. Stace, T.M., Barrett, S.D.: Error correction and degeneracy in surface codes suffering loss. Phys. Rev. A 81, 022317 (2010)

    Article  ADS  Google Scholar 

  26. Varnava, M., Browne, D., Rudolph, T.: Loss tolerance in one-way quantum computation via counterfactual error correction. Phys. Rev. Lett. 97, 120501 (2006)

    Article  ADS  Google Scholar 

  27. Viola, L., Fortunato, E.M., Pravia, M.A., Knill, E., Laflamme, R., Cory, D.G.: Experimental realization of noiseless subsystems for quantum information processing. Science 293, 2059 (2001)

    Article  ADS  Google Scholar 

  28. Wesslén, M.S.M.: A geometric description of tensor product decompositions in \(\mathfrak{su}\)(3). J. Math. Phys. 49, 073506 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  29. Yang, C.P., Gea-Banacloche, J.: Three-qubit quantum error-correction scheme for collective decoherence. Phys. Rev. A 63, 022311 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  30. Zanardi, P., Rasetti, M.: Noiseless quantum codes. Phys. Rev. Lett. 79, 3306 (1997)

    Article  ADS  Google Scholar 

  31. Zanardi, P., Rasetti, M.: Error avoiding quantum codes. Mod. Phys. Lett. B 11, 1085 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  32. Zanardi, P.: Dissipation and decoherence in a quantum register. Phys. Rev. A 57, 3276 (1998)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The research of Li was supported by a USA NSF grant, a HK RGC grant. He is an affiliate member of the Institute for Quantum Computing, University of Waterloo; an honorary professor of the Shanghai University and the University of Hong Kong. The research of Nakahara was supported by Grants-in-Aid for Scientific Research from the Japan Society for the Promotion of Science (Grant Nos. 23540470, 24320008 and 26400422). He is grateful to Qing-Wen Wang and Xi Chen for warm hospitality extended to him while he was staying at Shanghai University, where a part of this work was done. The research of Poon was supported by a USA NSF grant and a HK RGC grant. The research of Sze was supported by a HK RGC grant PolyU 502512. The authors want to thank Utkan Güngördü for some helpful discussion concerning the decomposition in (4). We would like to thank Paolo Zanardi for drawing our attention to Refs. [3032] and useful comments that improved our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikio Nakahara.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (txt 168 KB)

Appendix: Proofs of Theorems

Appendix: Proofs of Theorems

1.1 Proof of Theorem 2

By the Frobenius formula [8, 10, 28],

$$\begin{aligned} f(p_1,\ldots ,p_d) = \frac{(dk)! \prod _{\ell =1}^{d-1} \ell !}{\prod _{\ell =1}^d (k+d-\ell )!} = f_1(k)f_2(k), \end{aligned}$$

where

$$\begin{aligned} f_1(k) = \frac{(dk)!}{(k!)^d} \qquad \hbox { and } \qquad f_2(k) = \frac{ \prod _{\ell =1}^{d-1} \ell ! }{\prod _{\ell =1}^d ((k+1)\cdots (k+d-\ell ))}. \end{aligned}$$

Now, by Stirling’s formula, we obtain

$$\begin{aligned} \lim _{k\rightarrow \infty } \frac{\log _d f_1(k)}{dk}= & {} \lim _{k\rightarrow \infty } \frac{\ln (dk)! - d \ln k!}{(\ln d)dk}\nonumber \\= & {} \lim _{k\rightarrow \infty } \frac{ dk(\ln d) + O(\ln (dk)) - O(\ln k )}{(\ln d) dk} = 1, \end{aligned}$$

and

$$\begin{aligned} \lim _{k\rightarrow \infty } \frac{\log _d(f_2(k))}{dk} = \lim _{k\rightarrow \infty } \frac{\log _d\left( \prod _{\ell =1}^{d-1} \ell !\right) - \sum _{i=1}^d \sum _{j=1}^{d-i} \log _d(k+j)}{dk} = 0. \end{aligned}$$

The result follows. \(\square \)

1.2 Proof of Theorem 3

Consider the following terms:

$$\begin{aligned} \begin{array}{rcll} f(p_1,p_2,p_3)&{}-&{}f(p_1+1,p_2-1,p_3)\qquad &{}(1)\\ f(p_1,p_2,p_3)&{}-&{}f(p_1,p_2-1,p_3+1)\qquad &{}(2)\\ f(p_1,p_2,p_3)&{}-&{}f(p_1-1,p_2+1,p_3)\qquad &{}(3)\\ f(p_1,p_2,p_3)&{}-&{}f(p_1,p_2+1,p_3-1)\qquad &{}(4)\\ f(p_1,p_2,p_3)&{}-&{}f(p_1+1,p_2,p_3-1)\qquad &{}(5)\\ f(p_1,p_2,p_3)&{}-&{}f(p_1-1,p_2,p_3+1)\qquad &{}(6) \end{array} \end{aligned}$$

Clearly, if \(f(p_1,p_2,p_3)\) attains the maximum, then each of the above terms is nonnegative.

(a) When \(n = 3k\), there are three cases (a.1) \(p_2 > k\), (a.2) \(p_2<k\) and (a.3) \(p_2 = k\). We use Mathematica [13, see supplementary Mathematica file] to show the following.

  1. (a.1)

    If \((p_1,p_2,p_3) = (k+a+ b,k+a,k-2a-b)\) with \(a > 0\) and \(b \ge 0\), the sum of (1) and (2) is negative and so f cannot attain the maximum in this case.

  2. (a.2)

    If \((p_1,p_2,p_3) = (k+2a+b,k-a,k-a-b)\) with \(a > 0\) and \(b \ge 0\), then either (3) or (4) is negative and so f cannot attain the maximum in this case.

  3. (a.3)

    Let \((p_1,p_2,p_3) = (k+r,k,k-r)\) and define \( r_0 \equiv \frac{1}{2} \left( -3+\sqrt{3+3 k+\sqrt{12+20 k+9 k^2}}\right) \). Then (5) and (6) are both nonnegative if and only if \(\left\lceil r_0 \right\rceil \le r \le \left\lceil r_0\right\rceil +1\).

Moreover, \(r_0\) in (a.3) is not an integer for all \(k\ge 1\). Thus, \(f(k+r,k,k-r)\) will attain its maximum when \(r = \left\lceil r_0 \right\rceil \). Therefore, f has a unique maximum \(f(k+r,k,k-r)\) with \(r = \left\lceil r_0 \right\rceil \) when \(n = 3k\) as stated.

(b) When \(n = 3k+1\), we also have three cases (b.1) \(p_2>k\), (b.2) \(p_2<k\) and (b.3) \(p_2=k\). We use Mathematica [13] to show the following.

  1. (b.1)

    If \((p_1,p_2,p_3) = (k+1+a+b,k+a,k-2a-b)\) with \(a > 0\) and \(b \ge 0\), the sum of (1) and (2) is negative and so f cannot attain the maximum in this case.

  2. (b.2)

    If \((p_1,p_2,p_3) = (k+1+2a+b,k-a,k-a-b)\) with \(a > 0\) and \(b \ge 0\), then either (3) or (4) is negative and so f cannot attain the maximum in this case.

  3. (b.3)

    Let \((p_1,p_2,p_3) = (k+1+r,k,k-r)\) and define \(r_3 \equiv \frac{1}{4}(-8 + \sqrt{40+24k})\). Then (5) and (6) are both nonnegative if and only if \(\lceil r_3 \rceil \le r \le \lceil r_3 \rceil +1\).

There is a subtlety that does not exist for the case (a). We show that \(r_3\) is a positive integer if and only if \(k = 1 + 8 q + 6 q^2 \) or \(9+16q+6q^2\), for some integer \(q\ge 0\). In this case, the term (5) is equal to zero when \((p_1,p_2,p_3) = (k+1+r,k,k-r)\). Therefore, \(f(k+1+r,k,k-r)=f(k+2+r,k,k-r-1)\) and f has a maximum value at \((p_1,p_2,p_3)=(k+1+r,k,k-r)\) and \((k+2+r,k,k-r-1)\).

(c) When \(n = 3k+2\), we use Mathematica [13] to show the following.

  1. (c.1)

    If \((p_1,p_2,p_3) = (k+a+b,k+a,k+2-2a-b)\) with \(a > 1\) and \(b \ge 0\), the sum of (1) and (2) is negative and so f cannot attain the maximum in this case.

  2. (c.2)

    If \((p_1,p_2,p_3) = (k+2+a+b,k-a,k-a-b)\) with \(a \ge 1\) and \(b > 0\), the sum of (3) and (4) is negative and f cannot attain the maximum in this case.

The cases (c.1) and (c.2) show that the maximum of \(f(p_1,p_2,p_3)\) can occur only at \(p_2=k\) or \(k+1\). We show by Mathematica [13] that

  1. (c.3)

    For \(r \ge 0\), \(f(k+2+r,k,k-r)\le f(k+2+\left\lceil r_1 \right\rceil ,k,k-\left\lceil r_1 \right\rceil )\) and \(f(k+1+r,k+1,k-r)\le f(k+1+\left\lceil r_3 \right\rceil ,k+1,k-\left\lceil r_3 \right\rceil )\).

  2. (c.4)

    For \(r\ge 0\) and \((p_1,p_2,p_3)=(k+2+r,k,k-r)\), (3) is non-positive if and only if \(r\ge r_4 \) and (4) is non-positive if and only if \( r\le r_2 \).

By (c.3), the maximum of f occurs at either \((p_1,p_2,p_3) = (k+2+\left\lceil r_1 \right\rceil ,k,k-\left\lceil r_1 \right\rceil )\) or \((k+1+\left\lceil r_3 \right\rceil ,k+1,k-\left\lceil r_3 \right\rceil )\). Since \(0< r_3-r_1=\frac{1}{4}\left( 2-\sqrt{60+24k}+\sqrt{40+24k}\right) <\dfrac{1}{2}\), we have \(\left\lceil r_1 \right\rceil \le \left\lceil r_3 \right\rceil \le \left\lceil r_1 \right\rceil +1\). Furthermore, by (c.3) and (c.4),

$$\begin{aligned}&f(k+2+\left\lceil r_1 \right\rceil ,k,k-\left\lceil r_1 \right\rceil )\le f \left( k+1+\left\lceil r_3 \right\rceil ,k+1,k-\left\lceil r_3 \right\rceil \right) \nonumber \\&\hbox {if }\left\lceil r_1 \right\rceil \le r_2\ \hbox {or}\ \left\lceil r_1 \right\rceil \ge r_4 \end{aligned}$$
(9)

Conversely, suppose \(r_2\le \left\lceil r_1 \right\rceil \le r_4\). Then both (3) and (4) are nonnegative. Hence,

$$\begin{aligned} f(k+2+\left\lceil r_1 \right\rceil ,k,k-\left\lceil r_1 \right\rceil )\ge & {} f\left( k+1+\left\lceil r_1 \right\rceil ,k+1,k-\left\lceil r_1 \right\rceil \right) \quad \hbox {and} \nonumber \\ f\left( k+2+\left\lceil r_1 \right\rceil ,k,k-\left\lceil r_1 \right\rceil \right)\ge & {} f\left( k+2+\left\lceil r_1 \right\rceil ,k+1,k-\left\lceil r_1 \right\rceil -1\right) . \end{aligned}$$

Since \(\left\lceil r_1 \right\rceil \le \left\lceil r_3 \right\rceil \le \left\lceil r_1 \right\rceil +1\), it follows that

$$\begin{aligned}&f\left( k+2+\left\lceil r_1 \right\rceil ,k,k-\left\lceil r_1 \right\rceil \right) \ge f\left( k+1+\left\lceil r_3 \right\rceil ,k+1,k- \left\lceil r_3 \right\rceil \right) \nonumber \\&\hbox {if}\quad r_2\le \left\lceil r_1 \right\rceil \le r_4. \end{aligned}$$
(10)

By (9) and (10), f has a unique maximum if neither \(r_2\) nor \(r_4\) is an integer.

Suppose \(r_2\) is an integer for some k. Then we have

$$\begin{aligned} k=\left\{ \begin{array}{ll} \frac{4}{3} + 9 q + 6 q^2&{}\quad \hbox {if }r_2=3q ,\\ 5 + 13 q + 6 q^2&{}\quad \hbox {if }r_2=3q+1 , \\ 10 + 17 q + 6 q^2&{}\quad \hbox {if }r_2=3q+2 . \end{array} \right. \end{aligned}$$

Thus, \(r_2\) is an integer for some integer k if and only if \(k=5 + 13 q + 6 q^2\) or \(10 + 17 q + 6 q^2\) for some integer \(q\ge 0\). For \(k=5 + 13 q + 6 q^2\), \(r_1=\frac{1}{4} \left( -10 + \sqrt{180 + 312 q + 144 q^2}\right) \). We have

$$\begin{aligned} 3+12q = -10 + \sqrt{(13+12q)^2}\le & {} -10 + \sqrt{180+312 q + 144 q^2}\nonumber \\\le & {} -10 + \sqrt{(14+12q)^2} = 4+12q. \end{aligned}$$

So

$$\begin{aligned} \frac{3}{4} + 3q = \frac{1}{4} (3+12q) \le r_1 \le \frac{1}{4}(4+12q) = 1 + 3q \quad \Longrightarrow \quad \left\lceil r_1 \right\rceil =3q+1=r_2. \end{aligned}$$

For \(k=10 + 17 q + 6 q^2\), \(r_1=\frac{1}{4} \left( -10 + \sqrt{300 + 408 q + 144 q^2}\right) \). We have

$$\begin{aligned} 7+12q = -10 + \sqrt{(17+12q)^2}\le & {} -10 + \sqrt{300 + 408 q + 144 q^2}\nonumber \\\le & {} -10 + \sqrt{(18+3q)^2} = 8 + 12q. \end{aligned}$$

So

$$\begin{aligned} \frac{7}{4} + 3q = \frac{1}{4}(7+12q) \le r_1 \le \frac{1}{4}(8+12q) = 2 + 3q \quad \Longrightarrow \quad \left\lceil r_1 \right\rceil =3q+2=r_2. \end{aligned}$$

The proof for the case when \(r_4\) is an integer is similar. \(\square \)

1.3 Proof of Theorem 4

We first prove the following Lemma.

Lemma 1

Let \(r_0, r_1,r_2,r_3\) and \(r_4\) be the numbers defined in Theorem 3 and let

$$\begin{aligned} {\hat{r}}_0= & {} \frac{1}{2} \left( -3+\sqrt{3+3 (k+1)+\sqrt{12 + 20 (k+1) + 9 (k+1)^2}}\right) \nonumber \\= & {} \frac{1}{2} \left( -3+\sqrt{6+3 k+\sqrt{41 + 38 k + 9 k^2}}\right) . \end{aligned}$$

Then

$$\begin{aligned} r_1< r_3< r_0< {\hat{r}}_0 < r_1 +1 < r_3 + 1. \end{aligned}$$
(11)

Hence, \(\{\left\lceil r_0 \right\rceil ,\left\lceil {\hat{r}}_0 \right\rceil \} \subseteq \{\left\lceil r_3\right\rceil , \left\lceil r_3\right\rceil + 1\}\). Furthermore, \(\left\lceil r_0\right\rceil = \left\lceil r_3\right\rceil + 1\) if \(r_3\) is an integer and \(\lceil {\hat{r}}_0 \rceil = \left\lceil r_1\right\rceil + 1\) if \(r_2 \le \lceil r_1 \rceil \le r_4\).

Proof

With the help of Mathematica [13], we can show that

$$\begin{aligned}&{\left( r_0-r_3\right) \left( 1+\sqrt{10+6 k}+\sqrt{3+3 k+\sqrt{12+k (20+9 k)}}\right) }\nonumber \\&\qquad \times \left( 6+3 k+\sqrt{12+k (20+9 k)}+2 \sqrt{3+3 k+\sqrt{12+k (20+9 k)}}\right) \nonumber \\&\qquad \times \left( 3+k+\sqrt{12+k (20+9 k)}\right. \nonumber \\&\qquad \left. +\,\sqrt{12+k (20+9 k)} \sqrt{3+3 k+\sqrt{12+k (20+9 k)}}\right) \nonumber \\&\quad = 2 \left[ 3 \left( 13+4 \sqrt{12+k (20+9 k)}+8 \sqrt{3+3 k+\sqrt{12+k (20+9 k)}}\right) \right. \nonumber \\&\qquad +\,k \left\{ 10 \left( 11+2 \sqrt{12+k (20+9 k)}+4 \sqrt{3+3 k+\sqrt{12+k (20+9 k)}}\right) \right. \nonumber \\&\qquad \left. \left. +\,k \left( 95+27 k+9 \sqrt{12+k (20+9 k)}+18 \sqrt{3+3 k+\sqrt{12+k (20+9 k)}}\right) \right\} \right] \nonumber \\&\quad >0,\\&{({\hat{r}}_0- r_0)\left( \sqrt{3+3 k+\sqrt{12+k (20+9 k)}}+\sqrt{6+3 k+\sqrt{41+k (38+9 k)}}\right) } \nonumber \\&\qquad \times \left( 3+\sqrt{12+k (20+9 k)}+\sqrt{41+k (38+9 k)}\right) \nonumber \\&\quad =19+9 k+3 \sqrt{41+k (38+9 k)}>0. \end{aligned}$$

and

$$\begin{aligned}&{\left( r_1 +1- {\hat{r}}_0 \right) \left( \sqrt{15+6 k}+\sqrt{6+3 k+\sqrt{41+k (38+9 k)}}\right) }\nonumber \\&\qquad \times \left( 9+3 k+\sqrt{41+k (38+9 k)}\right) \nonumber \\&\quad =20+8 k >0. \end{aligned}$$

Hence, Eq. (11) follows. \(\square \)

Now we are ready to prove the theorem. Notice that by Theorem 3,

$$\begin{aligned} f^*(n) = \left\{ \begin{array}{ll} f(k+\lceil r_0\rceil ,k,k-\lceil r_0\rceil ) &{} \hbox {if } n = 3k, \\ f(k+ 1 +\lceil r_3\rceil ,k,k-\lceil r_3\rceil ) &{} \hbox {if } n = 3k+1, \\ f(k+1+\lceil r_3\rceil ,k+1,k-\lceil r_3\rceil ) &{} \hbox {if } n = 3k+2 \hbox { with } \left\lceil r_1\right\rceil \le r_2\ \hbox { or } \left\lceil r_1\right\rceil \ge r_4, \\ f(k+2+\lceil r_1\rceil ,k,k-\lceil r_1\rceil ) &{} \hbox {if } n = 3k+2 \hbox { with } r_2 \le \left\lceil r_1\right\rceil \le r_4,\\ f(k+\lceil {\hat{r}}_0\rceil ,k,k-\lceil {\hat{r}}_0\rceil ) &{} \hbox {if } n = 3k+3. \\ \end{array} \right. \end{aligned}$$

Furthermore, \(f(k+ 1 +\lceil r_3\rceil ,k,k-\lceil r_3\rceil ) = f(k+ 2 +\lceil r_3\rceil ,k,k-1-\lceil r_3\rceil )\) if \(r_3\) is an integer.

From \(n = 3k\) to \(n+1 = 3k+1\), suppose \((k+\lceil r_0\rceil ,k,k-\lceil r_0\rceil ) = (p_1,p_2,p_3)\). By Lemma 1, \(\left\lceil r_0 \right\rceil = \left\lceil r_3\right\rceil \) or \(\left\lceil r_3\right\rceil + 1\). Then

$$\begin{aligned} (k+1+\lceil r_3\rceil ,k,k-\lceil r_3\rceil ) = \left\{ \begin{array}{ll} (p_1+1,p_2,p_3) &{} \hbox {if } \lceil r_0 \rceil = \lceil r_3 \rceil , \\ (p_1,p_2,p_3+1) &{} \hbox {if } \lceil r_0 \rceil = \lceil r_3 \rceil +1. \end{array} \right. \end{aligned}$$

From \(n = 3k+1\) to \(n+1 = 3k+2\), suppose \((k+1+\lceil r_3\rceil ,k,k-\lceil r_3\rceil ) = (p_1,p_2,p_3)\). By Lemma 1, \(\left\lceil r_3 \right\rceil = \left\lceil r_1\right\rceil \) or \(\left\lceil r_1\right\rceil + 1\). Then

$$\begin{aligned} (k+1+\lceil r_3\rceil ,k+1,k-\lceil r_3\rceil )= & {} (p_1,p_2+1,p_3) \quad \hbox {and} \\ (k+2+\lceil r_1\rceil ,k,k-\lceil r_1\rceil )= & {} \left\{ \begin{array}{ll} (p_1+1,p_2,p_3) &{} \hbox {if } \lceil r_3 \rceil = \lceil r_1 \rceil , \\ (p_1,p_2,p_3+1) &{} \hbox {if } \lceil r_3 \rceil = \lceil r_1 \rceil +1. \end{array} \right. \end{aligned}$$

Further, suppose \(r_3\) is an integer, then \(\lceil r_3 \rceil = \lceil r_1 \rceil \), and hence, we must have \(r_2 \le \lceil r_1 \rceil \le r_4\) and \(f^*(3k+2) = f(k+2+\lceil r_1\rceil ,k,k-\lceil r_1\rceil )\). If \((p_1,p_2,p_3) = (k+2+\lceil r_3\rceil ,k,k-1-\lceil r_3\rceil )\), then

$$\begin{aligned} (k+2+\lceil r_1\rceil ,k,k-\lceil r_1\rceil ) = (p_1,p_2,p_3+1). \end{aligned}$$

Furthermore, if \(f^*(3k+1) = f(p_1^1,p_2^1,p_3^1) = f(p_1^2,p_2^2,p_3^2)\) with \((p_1^1,p_2^1,p_3^1) = (k+1+\lceil r_3\rceil ,k,k-\lceil r_3\rceil )\) and \((p_1^2,p_2^2,p_3^2) = (k+2+\lceil r_3\rceil ,k,k-1-\lceil r_3\rceil )\), then \(f^*(3k+2) = f(p_1^2,p_2^1,p_3^1)\).

Now from \(n = 3k+2\) to \(n+1 = 3k+3\), suppose \(\left\lceil r_1\right\rceil \le r_2\) or \(\left\lceil r_1\right\rceil \ge r_4\) and \((k+1+\lceil r_3\rceil ,k+1,k-\lceil r_3\rceil ) = (p_1,p_2,p_3)\). By Lemma 1, \(\left\lceil {\hat{r}}_0 \right\rceil = \left\lceil r_3\right\rceil \) or \(\left\lceil r_3\right\rceil + 1\). Then

$$\begin{aligned} (k+1 + \lceil {\hat{r}}_0 \rceil ,k+1,k+1-\lceil {\hat{r}}_0\rceil ) = \left\{ \begin{array}{ll} (p_1,p_2,p_3+1) &{} \hbox {if } \lceil {\hat{r}}_0 \rceil = \lceil r_3\rceil , \\ (p_1+1,p_2,p_3) &{} \hbox {if } \lceil {\hat{r}}_0 \rceil = \lceil r_3 \rceil + 1. \end{array}\right. \end{aligned}$$

Now suppose \(r_2 \le \lceil r_1 \rceil \le r_4\) and \((k+2+\lceil r_1\rceil ,k,k-\lceil r_1\rceil ) = (p_1,p_2,p_3)\). By Lemma 1, \(\lceil {\hat{r}}_0\rceil = \lceil r_1\rceil + 1\). Then

$$\begin{aligned} (k+1 + \lceil {\hat{r}}_0 \rceil ,k+1,k+1-\lceil {\hat{r}}_0\rceil ) = (p_1,p_2+1,p_3). \end{aligned}$$

Furthermore, if \(f^*(3k+2) = f(p_1^1,p_2^1,p_3^1) = f(p_1^2,p_2^2,p_3^2)\) with \((p_1^1,p_2^1,p_3^1) = (k+1+\lceil r_3\rceil ,k+1,k-\lceil r_3\rceil )\) and \((p_1^2,p_2^2,p_3^2) = (k+2+\lceil r_1\rceil ,k,k-\lceil r_1\rceil )\), then \(f^*(3k+3) = f(p_1^2,p_2^1,p_3^1)\). Thus, the result follows. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, CK., Nakahara, M., Poon, YT. et al. Maximal noiseless code rates for collective rotation channels on qudits. Quantum Inf Process 14, 4039–4055 (2015). https://doi.org/10.1007/s11128-015-1101-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1101-2

Keywords

Navigation