Skip to main content
Log in

One-dimensional quantum walks subject to next-nearest-neighbour hopping decoherence

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

It is believed that the decoherence will lead to a crossover from quantum to classical for the diffusive behaviour of discrete quantum walk in the long time limit. However, a few systems with sub-ballistic diffusive behaviours have been found in some non-unitary quantum walks. In this paper, we study the one-dimensional discrete quantum walks subject to a short-range hopping decoherence, i.e. with a probability the walker could hop to next-nearest-neighbour lattices unilaterally and/or bilaterally in one time step. We find that, when the decoherence effects only come from the bilateral hopping operation, the diffusive behaviours of quantum walks are sub-ballistic and the distributions of position exhibit three peaks. These results are quite different from those of the previous non-unitary quantum walks. Our results could be used to improve the algorithmic properties of quantum walk due to its faster diffusive speed and more uniform spreading.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Notes

  1. For a excellent review on decoherent quantum walks, see Kendon [24] and the corresponding chapter of comprehensive review Venegas-Andraca [25].

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997). preliminary version in STOC (1996)

    Article  ADS  Google Scholar 

  2. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete algorithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997). preliminary version in FOCS (1994)

    Article  MATH  MathSciNet  Google Scholar 

  3. Aharonov, Y., Davidovich, L., Zagury, N.: Quantum random walks. Phys. Rev. A 48, 1687 (1992)

    Article  ADS  Google Scholar 

  4. Farhi, E., Gutmann, S.: Quantum computation and decision trees. Phys. Rev. A 58, 915–928 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  5. Shenvi, N., Kempe, J., Whaley, K.B.: A quantum random walk search algorithm. Phys. Rev. A 67(5), 052307 (2003)

    Article  ADS  Google Scholar 

  6. Ambainis, A., Kempe, J., Rivosh, A.: Coins make quantum walks faster. Proceedings of the 16th ACM-SIAM SODA, pp. 1099–1108, (2005)

  7. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  8. Ambainis, A.: Quantum search algorithms. SIGACT News 35(2), 22–35 (2004)

    Article  Google Scholar 

  9. Ambainis, A.: New developments in quantum algorithms. In: 35th International Symposium on Mathematical Foundations of Computer Science, pp. 1–11, (2011)

  10. Dur, W., Raussendorf, R., Kendon, V.M., Briegel, H.J.: Quantum walks in optical lattices. Phys. Rev. A 66, 052319 (2002)

    Article  ADS  Google Scholar 

  11. Du, J., Li, H., Xu, X., Shi, M., Wu, J., Zhou, X., Han, R.: Experimental implementation of the quantum random-walk algorithm. Phys. Rev. A 67, 042316 (2003)

    Article  ADS  Google Scholar 

  12. Ryan, C.A., Laforest, M., Boileau, J.C., Laflamme, R.: Experimental implementation of a discrete-time quantum random walk on an NMR quantum-information processor. Phys. Rev. A 72, 062317 (2005)

    Article  ADS  Google Scholar 

  13. Zahringer, F., Kirchmair, G., Gerritsma, R., Solano, E., Blatt, R., Roos, C.F.: Realization of a quantum walk with one and two trapped ions. Phys. Rev. Lett. 104, 100503 (2010)

    Article  ADS  Google Scholar 

  14. Schmitz, H., Matjeschk, R., Schneider, Ch., Glueckert, J., Enderlein, M., Huber, T., Schaetz, T.: Quantum walk of a trapped Ion in phase space. Phys. Rev. Lett. 103, 090504 (2009)

    Article  ADS  Google Scholar 

  15. Xue, P., Sanders, C.B., Leibfried, D.: Quantum walk on a line for a trapped ion. Phys. Rev. Lett. 103(18), 183602 (2009)

    Article  ADS  Google Scholar 

  16. Karski, K., Foster, L., Choi, J.-M., Steffen, A., Alt, W., Meschede, D., Widera, A.: Quantum walk in position space with single optically trapped atoms. Science 325, 174 (2009)

    Article  ADS  Google Scholar 

  17. Broome, M.A., Fedrizzi, A., Lanyon, B.P., Kassal, I., Aspuru-Guzik, A., White, A.G.: Discrete single-photon quantum walks with tunable decoherence. Phys. Rev. Lett. 104, 153602 (2010)

    Article  ADS  Google Scholar 

  18. Eckert, K., Mompart, J., Birkl, G., Lewenstein, M.: One- and two-dimensional quantum walks in arrays of optical traps. Phys. Rev. A 72, 012327 (2005)

    Article  ADS  Google Scholar 

  19. Chandrashekar, C.M.: Implementing the one-dimensional quantum (Hadamard) walk using a Bose–Einstein condensate. Phys. Rev. A 74, 032307 (2006)

    Article  ADS  Google Scholar 

  20. Ma, Z.-Y., Burnett, K., dArcy, M.B., Gardiner, S.A.: Quantum random walks using quantum accelerator modes. Phys. Rev. A 73, 013401 (2006)

    Article  ADS  Google Scholar 

  21. Perets, H.B., Lahini, Y., Pozzi, F., Sorel, M., Morandotti, R., Silberberg, Y.: Realization of quantum walks with negligible decoherence in waveguide lattices. Phys. Rev. Lett. 100, 170506 (2008)

    Article  ADS  Google Scholar 

  22. Chandrashekar, C.M., Laflamme, R.: Quantum phase transition using quantum walks in an optical lattice. Phys. Rev. A 78, 022314 (2008)

    Article  ADS  Google Scholar 

  23. Oka, T., Konno, N., Arita, R., Aoki, H.: Breakdown of an electric-field driven system: a mapping to a quantum walk. Phys. Rev. Lett. 94, 100602 (2005)

    Article  ADS  Google Scholar 

  24. Kendon, V.: Decoherence in quantum walks: a review. Math. Struct. Comp. Sci. 17, 1169 (2006)

    MathSciNet  Google Scholar 

  25. Venegas-Andraca, S.E.: Quantum walks: a comprehensive review. Quantum Inf. Process. 11(5), 1015–1106 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum to classical transition for random walks. Phys. Rev. Lett. 91, 130602 (2003)

    Article  ADS  Google Scholar 

  27. Brun, T.A., Carteret, H.A., Ambainis, A.: Quantum random walks with decoherent coins. Phys. Rev. A. 67, 032304 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  28. Romanelli, A., Siri, R., Abal, G., Auyuanet, A., Donangelo, R.: Decoherence in the quantum walk on the line. Phys. A 347, 137 (2004)

    Article  MathSciNet  Google Scholar 

  29. Kos̆ík, J., Buz̆ek, V., Hillery, M.: Quantum walks with random phase shifts. Phys. Rev. A 74, 022310 (2006)

    Article  ADS  Google Scholar 

  30. Banerjee, S., Srikanth, R., Chandrashekar, C.M., Rungta, P.: Symmetry-noise interplay in a quantum walk on an n-cycle. Phys. Rev. A 78, 052316 (2008)

    Article  ADS  Google Scholar 

  31. Liu, C., Petulante, N.: Quantum walks on the N-cycle subject to decoherence on the coin degree of freedom. Phys. Rev. E 81, 031113 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  32. Liu, C., Petulante, N.: Asymptotic evolution of quantum walks on the N-cycle subject to decoherence on both the coin and position degrees of freedom. Phys. Rev. A 84, 012317 (2011)

    Article  ADS  Google Scholar 

  33. Ampadu, C.: Brun-type formalism for decoherence in two-dimensional quantum walks. Commun. Theor. Phys. 57, 41 (2011)

    Article  MathSciNet  Google Scholar 

  34. Oliveira, A.C., Portugal, R., Donangelo, R.: Decoherence in two-dimensional quantum walks. Phys. Rev. A 74(1), 012312 (2006)

    Article  ADS  Google Scholar 

  35. Gönülol, M., Aydiner, E., Müstecaplioǧlu, Ö.E.: Decoherence in two-dimensional quantum random walks with traps. Phys. Rev. A 80(2), 022336 (2009)

    Article  Google Scholar 

  36. Alagić, G., Russell, A.: Decoherence in quantum walks on the hypercube. Phys. Rev. A 72, 062304 (2005)

    Article  ADS  Google Scholar 

  37. Chandrashekar, C.M., Srikanth, R., Banerjee, S.: Symmetries and noise in quantum walk. Phys. Rev. A 76, 022316 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  38. Annabestani, M., Akhtarshenas, S.J., Abolhassani, M.R.: Decoherence in a one-dimensional quantum walk. Phys. Rev. A 81, 032321 (2010)

    Article  ADS  Google Scholar 

  39. Lopez, C.C., Paz, J.P.: Phase-space approach to the study of decoherence in quantum walks. Phys. Rev. A 68, 052305 (2003)

    Article  ADS  Google Scholar 

  40. Zhang, K.: Limiting distribution of decoherent quantum random walks. Phys. Rev. A 77, 062302 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  41. Fan, S., Feng, Z., Xiong, S., Yang, W.S.: Convergence of quantum random walks with decoherence. Phys. Rev. A 84, 042317 (2011)

    Article  ADS  Google Scholar 

  42. Romanelli, A.: Measurements in the Lvy quantum walk. Phys. Rev. A 76, 054306 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  43. Ribeiro, P., Milman, P., Mosseri, R.: Aperiodic quantum random walks. Phys. Rev. Lett 93, 190503 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  44. Lavička, H., Potoček, V., Kiss, T., Lutz, E., Jex, I.: Quantum walk with jumps. Eur. Phys. J. D-At. Mol. Opt. Plasma Phys. 64, 119C129 (2011)

    Google Scholar 

  45. Inui, N., Konno, N., Segawa, E.: One-dimensional three-state quantum walk. Phys. Rev. E 72, 056112 (2005)

    Article  ADS  Google Scholar 

  46. Kendon, V., Tregenna, B.: Decoherence can be useful in quantum walks. Phys. Rev. A 67, 042315 (2003)

    Article  ADS  Google Scholar 

  47. Maloyer, O., Kendon, V.: Decoherence versus entanglement in coined quantum walks. New J. Phys. 9, 87 (2007)

    Article  ADS  Google Scholar 

  48. Kendon, V., Maloyer, O.: Optimal computation with non-unitary quantum walks. Theor. Comput. Sci. 394, 187C196 (2008)

    Article  MathSciNet  Google Scholar 

  49. Richter, P.C.: Quantum speedup of classical mixing processes. Phys. Rev. A 76, 042306 (2007)

    Article  ADS  Google Scholar 

  50. Holevo, A.S.: Statistical Structure of Quantum Theory. Springer, Berlin (2001)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors thank Ye Xiong and Yi Gao for the critical reading of the manuscript and useful discussions. This work was supported by the National Natural Science Foundation of China (Grant No. 11175087), by National Key Projects for Basic Research of China (Grant No. 2009CB929501) and by the Project on Graduate Students Education and Innovation of Jiangsu Province (Grant No. CXZZ13_0392).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peiqing Tong.

Appendix: the eigenvalues of superoperator \({\mathcal {L}}_{k}\)

Appendix: the eigenvalues of superoperator \({\mathcal {L}}_{k}\)

It is easy to see that \(\lambda =1\) is an eigenvalue of \({\mathcal {L}}_{k}\), and the other eigenvalues are eigenvalues of the three by three submatrix

$$\begin{aligned} M_{k}=\left( \begin{array}{cccc} 0 &{} a &{} b \\ 0 &{} -b &{} a \\ 1 &{} 0 &{} 0\end{array} \right) . \end{aligned}$$
(35)

Let \(\lambda _{1}\), \(\lambda _{2}\) and \(\lambda _{3}\) are eigenvalues of \(M_{k}\), then we have

$$\begin{aligned} det\left| I-M_{k}\right| =(1-\lambda _{1})(1-\lambda _{2})(1-\lambda _{3}). \end{aligned}$$
(36)

If \(\lambda =1\) is an eigenvalue of \(M_{k}\), then \(det\left| I-M_{k}\right| \equiv 0\). When \(0<p\le 1\) and \(0\le q<1\), we can find that \(det\left| I-M_{k}\right| =1-a^{2}-b^{2}\ne 0\) for all \(k\). Therefore, \(\lambda =1\) is not an eigenvalue of \(M_{k}\). Similarly,

$$\begin{aligned} det\left| I+M_{k}\right| =(1+\lambda _{1})(1+\lambda _{2})(1+\lambda _{3})=a^{2}+(1-b)^{2}\ne 0. \end{aligned}$$
(37)

Hence, \(\lambda =-1\) is also not an eigenvalue of \(M_{k}\).

Now suppose \(\lambda _{1}=e^{i\theta }\) (\(\theta \) is a real number) is a complex eigenvalue of \(M_{k}\), then the conjugate \(\lambda _{2}=e^{-i\theta }\) must also be an eigenvalue of \(M_{k}\). The third eigenvalue is \(\lambda _{3}=a^{2}+b^{2}\) due to \(det\left| M_{k}\right| =\lambda _{1}\lambda _{2}\lambda _{3}\). Therefore, the characteristic polynomial of \(M_{k}\) is given by

$$\begin{aligned} det\left| \lambda I_{3}-M_{k}\right|= & {} (\lambda -\lambda _{1}) (\lambda -\lambda _{2}) (\lambda -\lambda _{3}) \nonumber \\= & {} \lambda ^{3}- \left( a^{2}+b^{2}+2\cos \theta \right) \lambda ^{2} \nonumber \\&+\,\left[ 1+2(a^{2}+b^{2})\cos \theta \right] \lambda -a^{2}-b^{2}. \end{aligned}$$
(38)

On the other hand, we can obtain the characteristic polynomial of \(M_{k}\) directly from Eq. (35), i.e.

$$\begin{aligned} det\left| \lambda I_{3}-M_{k}\right| =\lambda ^{3}+b\lambda ^{2}-b\lambda -a^{2}-b^{2}. \end{aligned}$$
(39)

Comparing corresponding coefficients of Eqs. (38) and (39), we obtain the following equations:

$$\begin{aligned} b= & {} -(a^{2}+b^{2}+2\cos \theta ), \end{aligned}$$
(40)
$$\begin{aligned} -b= & {} 1+2(a^{2}+b^{2})\cos \theta ). \end{aligned}$$
(41)

From the two equations, we find \((1-a^{2}-b^{2})(1-2\cos \theta )=0\). Then, \(\cos \theta \) must be \(1/2\) due to \(1-a^{2}-b^{2}\ne 0\). Substituting \(\cos \theta =1/2\) back into one of equations, we infer that \(1+a^{2}+b^{2}=-b\). This result is impossible since \(1+a^{2}+b^{2}>1>-b\) when \(0<p\le 1\) and \(0\le q<1\). This contradiction implies that \(M_{k}\) has not complex eigenvalue of unit modulus. In conclusion, when \(0<p\le 1\) and \(0\le q<1\), \(\lambda =1\) is only unit modulus eigenvalue of \({\mathcal {L}}_{k}\), the other eigenvalues \(|\lambda |<1\).

On the other hand, when \(0<p<1\) and \(q=1\), we find that \(a=0\) and \(b=1\) for \(k=0,\pm \pi \) and the superoperator \({\mathcal {L}}_{k}\) has four unit modulus eigenvalues.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Tong, P. One-dimensional quantum walks subject to next-nearest-neighbour hopping decoherence. Quantum Inf Process 14, 2357–2372 (2015). https://doi.org/10.1007/s11128-015-1012-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-1012-2

Keywords

Navigation