Skip to main content
Log in

Generation and nonclassicality of entangled states via the interaction of two three-level atoms with a quantized cavity field assisted by a driving external classical field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The interaction of two identical three-level atoms of the types \(V,\,\varXi \) and \(\varLambda \) with a quantized cavity field as well as a driving external classical field is studied. Under two certain unitary transformations, the system is converted to a typical form of the Jaynes–Cummings model for two three-level atoms. The exact analytical solutions of the wave function for different considered atom–field systems are exactly obtained with the help of the Laplace transform technique, when the atoms are initially prepared in the topmost excited state and the quantized field is in a coherent state. In order to examine the nonclassicality features of the deduced states, the dynamics of the entanglement between subsystems is discussed via two well-known measures, namely, von Neumann entropy of the reduced state and negativity. In addition, we pay attention to the temporal behavior of quantum statistics of the photons of the field and squeezing phenomenon. Meanwhile, the influence of the external classical field on the latter physical quantities is analyzed in detail. The results show that the mentioned quantities can be sensitively controlled via the external classical field. Also, numerical computations imply the fact that the nonclassicality features in \(\varXi \)-type three-level atomic system is more visible than the other two configurations. In addition, it is shown that in the particular case of \(\varLambda \)-type atomic system, the rank of the reduced density matrix of the three-level atoms is no larger than three, so that negativity fully captures the entanglement of this system and that such entanglement is distillable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Jaynes, E.T., Cummings, F.W.: Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proc. IEEE 51, 89 (1963)

    Article  Google Scholar 

  2. Cummings, F.W.: Stimulated emission of radiation in a single mode. Phys. Rev. 140, A1051 (1965)

    Article  ADS  Google Scholar 

  3. Shore, B.W., Knight, P.L.: The Jaynes–Cummings model. J. Mod. Opt. 40, 1195 (1993)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  4. LaHaye, M.D., Suh, J., Echternach, P.M., Schwab, K.C., Roukes, M.L.: Nanomechanical measurements of a superconducting qubit. Nature 459, 960 (2009)

    Article  ADS  Google Scholar 

  5. Irish, E.K., Schwab, K.: Quantum measurement of a coupled nanomechanical resonator–cooper–pair box system. Phys. Rev. B 68, 155311 (2003)

    Article  ADS  Google Scholar 

  6. Kukliński, J.R., Madajczyk, J.L.: Strong squeezing in the Jaynes–Cummings model. Phys. Rev. A 37, 3175 (1988)

    Article  ADS  Google Scholar 

  7. Rodriguez-Lara, B.M., Moya-Cessa, H., Klimov, A.B.: Combining Jaynes–Cummings and anti-Jaynes–Cummings dynamics in a trapped-ion system driven by a laser. Phys. Rev. A 71, 023811 (2005)

    Article  ADS  Google Scholar 

  8. Buck, B., Sukumar, C.V.: Exactly soluble model of atom-phonon coupling showing periodic decay and revival. Phys. Lett. A 81, 132 (1981)

    Article  ADS  Google Scholar 

  9. Buck, B., Sukumar, C.V.: Solution of the heisenberg equations for an atom interacting with radiation. J. Phys. A Math. Nucl. Gen. 17, 877 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  10. Faghihi, M.J., Tavassoly, M.K.: Quantum entanglement and position-momentum entropic squeezing of a moving Lambda-type three-level atom interacting with a single-mode quantized field with intensity-dependent coupling. J. Phys. B At. Mol. Opt. Phys. 46, 145506 (2013)

    Article  ADS  Google Scholar 

  11. Baghshahi, H.R., Tavassoly, M.K.: Entanglement, quantum statistics and squeezing of two \(\varXi \)-type three-level atoms interacting nonlinearly with a single-mode field. Phys. Scr. 89, 075101 (2014)

    Article  ADS  Google Scholar 

  12. Faghihi, M.J., Tavassoly, M.K., Bagheri Harouni, M.: Tripartite entanglement dynamics and entropic squeezing of a three-level atom interacting with a bimodal cavity field. Laser Phys. 24, 045202 (2014)

    Article  ADS  Google Scholar 

  13. Faghihi, M.J., Tavassoly, M.K., Hatami, M.: Dynamics of entanglement of a three-level atom in motion interacting with two coupled modes including parametric down conversion. Phys. A 407, 100 (2014)

    Article  MathSciNet  Google Scholar 

  14. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Dynamics of entropy and nonclassicality features of the interaction between a \(\diamondsuit \)-type four-level atom and a single-mode field in the presence of intensity-dependent coupling and Kerr nonlinearity. Commun. Theor. Phys. 62, 430 (2014)

    Article  MATH  Google Scholar 

  15. Baghshahi, H.R., Tavassoly, M.K., Behjat, A.: Entropy squeezing and atomic inversion in the \(k\)-photon Jaynes–Cummings model in the presence of Kerr medium and Stark shift: full nonlinear approach. Chin. Phys. B 23, 074203 (2014)

    Article  Google Scholar 

  16. Bougouffa, S., Ficek, Z.: Atoms versus photons as carriers of quantum states. Phys. Rev. A 88, 022317 (2013)

    Article  ADS  Google Scholar 

  17. Hessian, H.A., Hashem, M.: Entanglement and purity loss for the system of two 2-level atoms in the presence of the Stark shift. Quantum Inf. Process. 10, 543 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ashraf, M.M.: Emission spectra of a \(\varLambda \)-type quantum-beat three-level atom. Phys. Rev. A 50, 741 (1994)

    Article  ADS  Google Scholar 

  19. Zait, R.A.: Nonclassical statistical properties of a three-level atom interacting with a single-mode field in a Kerr medium with intensity dependent coupling. Phys. Lett. A 319, 461 (2003)

    Article  ADS  Google Scholar 

  20. Obada, A.S.F., Hanoura, S.A., Eied, A.A.: Entanglement of a multi-photon three-level atom interacting with a single-mode field in the presence of nonlinearities. Eur. Phys. J. D 66, 1 (2012)

    Article  Google Scholar 

  21. Obada, A.S.F., Hanoura, S.A., Eied, A.H.: Collapse-revival phenomenon for different configurations of a three-level atom interacting with a field via multi-photon process and nonlinearities. Eur. Phys. J. D 68, 18 (2014)

    Article  ADS  Google Scholar 

  22. Boller, K.J., Imamolu, A., Harris, S.E.: Observation of electromagnetically induced transparency. Phys. Rev. Lett. 66, 2593 (1991)

    Article  ADS  Google Scholar 

  23. Scully, M.O., Zhu, S.Y., Gavrielides, A.: Degenerate quantum-beat laser: lasing without inversion and inversion without lasing. Phys. Rev. Lett. 62, 2813 (1989)

    Article  ADS  Google Scholar 

  24. Scully, M.O., Zubairy, M.S.: Quantum Optics. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  25. Chiu, C.B., Sudarshan, E.C.G., Misra, B.: Time evolution of unstable quantum states and a resolution of Zeno’s paradox. Phys. Rev. D 16, 520 (1977)

    Article  ADS  MathSciNet  Google Scholar 

  26. Cook, R.J., Kimble, H.J.: Possibility of direct observation of quantum jumps. Phys. Rev. Lett. 54, 1023 (1985)

    Article  ADS  Google Scholar 

  27. Tajalli, H., Mahmoudi, M., Izmailov, A.C.: Coherent population trapping in the open three-level cascade system. Laser Phys. 13, 1370 (2003)

    Google Scholar 

  28. Marzoli, I., Cirac, J.I., Blatt, R., Zoller, P.: Laser cooling of trapped three-level ions: designing two-level systems for sideband cooling. Phys. Rev. A 49, 2771 (1994)

    Article  ADS  Google Scholar 

  29. Bergmann, K., Theuer, H., Shore, B.W.: Coherent population transfer among quantum states of atoms and molecules. Rev. Mod. Phys. 70, 1003 (1998)

    Article  ADS  Google Scholar 

  30. Alsing, P., Guo, D.S., Carmichael, H.J.: Dynamic Stark effect for the Jaynes–Cummings system. Phys. Rev. A 45, 5135 (1992)

    Article  ADS  Google Scholar 

  31. Sanchez-Mondragon, J.J., Narozhny, N.B., Eberly, J.H.: Theory of spontaneous-emission line shape in an ideal cavity. Phys. Rev. Lett. 51, 550 (1983)

    Article  ADS  Google Scholar 

  32. Varcoe, B.T.H., Brattke, S., Weidinger, M., Walther, H.: Preparing pure photon number states of the radiation field. Nature 403, 743 (2000)

    Article  ADS  Google Scholar 

  33. Turchette, Q.A., Hood, C.J., Lange, W., Mabuchi, H., Kimble, H.J.: Measurement of conditional phase shifts for quantum logic. Phys. Rev. Lett. 75, 4710 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  34. Rauschenbeutel, A., Nogues, G., Osnaghi, S., Bertet, P., Brune, M., Raimond, J.M., Haroche, S.: Coherent operation of a tunable quantum phase gate in cavity qed. Phys. Rev. Lett. 83, 5166 (1999)

    Article  ADS  Google Scholar 

  35. Solano, E., Agarwal, G.S., Walther, H.: Strong-driving-assisted multipartite entanglement in cavity qed. Phys. Rev. Lett. 90, 027903 (2003)

    Article  ADS  Google Scholar 

  36. Miry, S.R., Tavassoly, M.K., Roknizadeh, R.: Generation of some entangled states of the cavity field. Quantum Inf. Process. doi:10.1007/s11128-014-0856-1

  37. Li, F.L., Gao, S.Y.: Controlling nonclassical properties of the Jaynes–Cummings model by an external coherent field. Phys. Rev. A 62, 043809 (2000)

    Article  ADS  Google Scholar 

  38. Dutra, S.M., Knight, P.L., Moya-Cessa, H.: Large-scale fluctuations in the driven Jaynes–Cummings model. Phys. Rev. A 49, 1993 (1994)

    Article  ADS  Google Scholar 

  39. Chough, Y.T., Carmichael, H.J.: Nonlinear oscillator behavior in the Jaynes–Cummings model. Phys. Rev. A 54, 1709 (1996)

    Article  ADS  Google Scholar 

  40. Gerry, C.C.: Conditional state generation in a dispersive atom–cavity field interaction with a continuous external pump field. Phys. Rev. A 65, 063801 (2002)

    Article  ADS  Google Scholar 

  41. Akhtarshenas, S.J., Khezrian, M.: Entanglement dynamics and decoherence of an atom coupled to a dissipative cavity field. Eur. Phys. J. D 57, 271 (2010)

    Article  ADS  Google Scholar 

  42. Abdalla, M.S., Bouchne, M.A., Abdel-Aty, M., Yu, T., Obada, A.S.F.: Dynamics of an atom coupled through a parametric frequency converter with quantum and classical fields. Opt. Commun. 283, 2820 (2010)

    Article  ADS  Google Scholar 

  43. Lougovski, P., Casagrande, F., Lulli, A., Solano, E.: Strongly driven one-atom laser and decoherence monitoring. Phys. Rev. A 76, 033802 (2007)

    Article  ADS  Google Scholar 

  44. Bechmann-Pasquinucci, H., Peres, A.: Quantum cryptography with 3-state systems. Phys. Rev. Lett. 85, 3313 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  45. Bruß, D., Macchiavello, C.: Optimal eavesdropping in cryptography with three-dimensional quantum states. Phys. Rev. Lett. 88, 127901 (2002)

    Article  ADS  Google Scholar 

  46. Kaszlikowski, D., Gnaciński, P., Żukowski, M., Miklaszewski, W., Zeilinger, A.: Violations of local realism by two entangled \(n\)-dimensional systems are stronger than for two qubits. Phys. Rev. Lett. 85, 4418 (2000)

    Article  ADS  Google Scholar 

  47. Kafatos, M.: Bell’s Theorem, Quantum Theory and Conceptions of the Universe. Fundamental Theories of Physics. Springer, Berlin (2010)

  48. Mermin, N.D.: Quantum mechanics vs local realism near the classical limit: a bell inequality for spin \(s\). Phys. Rev. D 22, 356 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  49. Garg, A., Mermin, N.D.: Bell inequalities with a range of violation that does not diminish as the spin becomes arbitrarily large. Phys. Rev. Lett. 49, 901 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  50. Ardehali, M.: Hidden variables and quantum-mechanical probabilities for generalized spin-\(s\) systems. Phys. Rev. D 44, 3336 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  51. Greentree, A.D., Schirmer, S.G., Green, F., Hollenberg, L.C.L., Hamilton, A.R., Clark, R.G.: Maximizing the Hilbert space for a finite number of distinguishable quantum states. Phys. Rev. Lett. 92, 097901 (2004)

    Article  ADS  Google Scholar 

  52. Dutta, B.K., Mahapatra, P.K.: Electromagnetically induced grating in a three-level \(\xi \)-type system driven by a strong standing wave pump and weak probe fields. J. Phys. B At. Mol. Opt. Phys. 39, 1145 (2006)

  53. Faghihi, M.J., Tavassoly, M.K.: Dynamics of entropy and nonclassical properties of the state of a \(\lambda \)-type three-level atom interacting with a single-mode cavity field with intensity-dependent coupling in a Kerr medium. J. Phys. B At. Mol. Opt. Phys. 45, 035502 (2012)

  54. Faghihi, M.J., Tavassoly, M.K.: Number-phase entropic squeezing and nonclassical properties of a three-level atom interacting with a two-mode field: intensity-dependent coupling, deformed Kerr medium, and detuning effects. J. Opt. Soc. Am. B 30, 2810 (2013)

    Article  ADS  Google Scholar 

  55. Faghihi, M.J., Tavassoly, M.K., Hooshmandasl, M.R.: Entanglement dynamics and position-momentum entropic uncertainty relation of a \(\lambda \)-type three-level atom interacting with a two-mode cavity field in the presence of nonlinearities. J. Opt. Soc. Am. B 30, 1109 (2013)

    Article  ADS  Google Scholar 

  56. Makhlin, Y., Schön, G., Shnirman, A.: Quantum-state engineering with Josephson-junction devices. Rev. Mod. Phys. 73, 357 (2001)

    Article  ADS  Google Scholar 

  57. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58, 42 (2005)

    Article  Google Scholar 

  58. You, J.Q., Lam, C.-H., Zheng, H.Z.: Superconducting charge qubits: the roles of self and mutual inductances. Phys. Rev. B 63, 180501 (2001)

    Article  ADS  Google Scholar 

  59. You, J.Q., Tsai, J.S., Nori, F.: Scalable quantum computing with Josephson charge qubits. Phys. Rev. Lett. 89, 197902 (2002)

    Article  ADS  Google Scholar 

  60. Liu, Y., Wei, L.F., Tsai, J.S., Nori, F.: Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006)

    Article  ADS  Google Scholar 

  61. Liu, Y., Sun, C.P., Nori, F.: Scalable superconducting qubit circuits using dressed states. Phys. Rev. A 74, 052321 (2006)

    Article  ADS  Google Scholar 

  62. Neeley, M., Ansmann, M., Bialczak, R.C., Hofheinz, M., Lucero, E., O’Connell, A.D., Sank, D., Wang, H., Wenner, J., Cleland, A.N., Geller, M.R., Martinis, J.M.: Emulation of a quantum spin with a superconducting phase qudit. Science 325, 722 (2009)

    Article  ADS  Google Scholar 

  63. de Oliveira, F.A.M., Kim, M.S., Knight, P.L., Buzek, V.: Properties of displaced number states. Phys. Rev. A 41, 2645 (1990)

    Article  ADS  Google Scholar 

  64. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  MATH  Google Scholar 

  65. Schrödinger, E.: Die gegenwärtige situation in der quantenmechanik. Naturwissenschaften 23, 823 (1935)

    Article  ADS  Google Scholar 

  66. Bennett, C.H., DiVincenzo, D.P.: Quantum information and computation. Nature 404, 247 (2000)

    Article  ADS  Google Scholar 

  67. Giovannetti, V., Lloyd, S., Maccone, L.: Quantum-enhanced measurements: beating the standard quantum limit. Science 306, 1330 (2004)

    Article  ADS  Google Scholar 

  68. Jennewein, T., Simon, C., Weihs, G., Weinfurter, H., Zeilinger, A.: Quantum cryptography with entangled photons. Phys. Rev. Lett. 84, 4729 (2000)

    Article  ADS  Google Scholar 

  69. Ganguly, N., Adhikari, S., Majumdar, A.S., Chatterjee, J.: Entanglement witness operator for quantum teleportation. Phys. Rev. Lett. 107, 270501 (2011)

    Article  Google Scholar 

  70. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474, 1 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  71. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  72. Akhtarshenas, S.J., Farsi, M.: Negativity as entanglement degree of the Jaynes–Cummings model. Phys. Scr. 75, 608 (2007)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  73. Sainz, I., Björk, G.: Entanglement invariant for the double Jaynes–Cummings model. Phys. Rev. A 76, 042313 (2007)

    Article  ADS  Google Scholar 

  74. de Paula, A.L., de Oliveira, J.G.G., de Faria, J.G.P., Freitas, D.S., Nemes, M.C.: Entanglement dynamics of many-body systems: analytical results. Phys. Rev. A 89, 022303 (2014)

    Article  ADS  Google Scholar 

  75. Vedral, V., Plenio, M.B., Jacobs, K., Knight, P.L.: Statistical inference, distinguishability of quantum states, and quantum entanglement. Phys. Rev. A 56, 4452 (1997)

    Article  ADS  Google Scholar 

  76. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  77. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27 (2001)

    MATH  MathSciNet  Google Scholar 

  78. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  79. Phoenix, S.J.D., Knight, P.L.: Fluctuations and entropy in models of quantum optical resonance. Ann. Phys. 186, 381 (1988)

    Article  ADS  MATH  Google Scholar 

  80. Araki, H., Lieb, E.H.: Entropy inequalities. Commun. Math. Phys. 18, 160 (1970)

    Article  ADS  MathSciNet  Google Scholar 

  81. Barnett, S.M., Phoenix, S.J.D.: Information theory, squeezing, and quantum correlations. Phys. Rev. A 44, 535 (1991)

    Article  ADS  Google Scholar 

  82. Childs, L.N.: A Concrete Introduction to Higher Algebra. Undergraduate Texts in Mathematics. Springer, Berlin (2009)

    Google Scholar 

  83. Li, M., Fei, S.-M.: Measurable bounds for entanglement of formation. Phys. Rev. A 82, 044303 (2010)

    Article  ADS  Google Scholar 

  84. Eltschka, C., Siewert, J.: Negativity as an estimator of entanglement dimension. Phys. Rev. Lett. 111, 100503 (2013)

    Article  ADS  Google Scholar 

  85. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  86. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of mixed states: necessary and sufficient conditions. Phys. Lett. A 223, 1 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  87. Życzkowski, K., Horodecki, P., Sanpera, A., Lewenstein, M.: Volume of the set of separable states. Phys. Rev. A 58, 883 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  88. Simon, R.: Peres–Horodecki separability criterion for continuous variable systems. Phys. Rev. Lett. 84, 2726 (2000)

    Article  ADS  Google Scholar 

  89. Werner, R.F., Wolf, M.M.: Bound entangled Gaussian states. Phys. Rev. Lett. 86, 3658 (2001)

    Article  ADS  Google Scholar 

  90. Horodecki, P., Lewenstein, M., Vidal, G., Cirac, I.: Operational criterion and constructive checks for the separability of low-rank density matrices. Phys. Rev. A 62, 032310 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  91. Mandel, L.: Sub-poissonian photon statistics in resonance fluorescence. Opt. Lett. 4, 205 (1979)

    Article  ADS  Google Scholar 

  92. Agarwal, G.S., Tara, K.: Nonclassical character of states exhibiting no squeezing or sub-poissonian statistics. Phys. Rev. A 46, 485 (1992)

    Article  ADS  Google Scholar 

  93. Bachor, H.A., Ralph, T.C.: A guide to experiments in quantum optics. In: Bachor, H.-A., Ralph, T.C. (eds.) A Guide to Experiments in Quantum Optics, 2nd edn. Revised and Enlarged Edition, pp. 434. ISBN 3-527-40393-0. Wiley-VCH, 1 (2004)

  94. Kimble, H.J., Walls, D.: Squeezed states of the electromagnetic field: introduction to feature issue. JOSA B 4, 1449 (1987)

    Article  ADS  Google Scholar 

  95. Hillery, M.: Squeezing of the square of the field amplitude in second harmonic generation. Opt. Commun. 62, 135 (1987)

    Article  ADS  Google Scholar 

  96. Collett, M.J., Gardiner, C.W.: Squeezing of intracavity and traveling-wave light fields produced in parametric amplification. Phys. Rev. A 30, 1386 (1984)

    Article  ADS  Google Scholar 

  97. Perina, J.: Quantum Statistics of Linear and nonlinear Optical Phenomena. Springer, Berlin (1991)

    Google Scholar 

Download references

Acknowledgments

One of the authors (H. R. Baghshahi) would like to thank Dr. M. J. Faghihi for useful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. K. Tavassoly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Baghshahi, H.R., Tavassoly, M.K. & Akhtarshenas, S.J. Generation and nonclassicality of entangled states via the interaction of two three-level atoms with a quantized cavity field assisted by a driving external classical field. Quantum Inf Process 14, 1279–1303 (2015). https://doi.org/10.1007/s11128-015-0915-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-015-0915-2

Keywords

Navigation