Skip to main content
Log in

Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

A scheme of fast synthesizing the Fredkin gate is proposed in cavity QED via quantum Zeno dynamics. Three atoms are trapped in three different but directly coupled cavities in this scheme. The strictly numerical simulations are given, and the influences of cavity decay and spontaneous emission on the gate operation are analyzed with master equation. The result shows that our scheme is robust against atomic spontaneous emission because of the large detuning. Since the atoms are separated in different cavities, it is easier to manipulate atoms experimentally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Buluta, I.M., Nori, F.: Quantum simulators. Science 326, 108 (2009)

    Article  ADS  Google Scholar 

  2. Georgescu, I.M., Ashhab, S., Nori, F.: Quantum simulation. Rev. Mod. Phys. 86, 153 (2014)

    Article  ADS  Google Scholar 

  3. Yang, C.P., Liu, Y.X., Nori, F.: Phase gate of one qubit simultaneously controlling n qubits in a cavity or coupled to a resonator. Phys. Rev. A 81, 062323 (2010)

    Article  ADS  Google Scholar 

  4. Yang, C.P., Zheng, S.B., Nori, F.: Multiqubit tunable phase gate of one qubit simultaneously controlling n qubits in a cavity. Phys. Rev. A 82, 062326 (2010)

    Article  ADS  Google Scholar 

  5. Ashhab, S., de Groot, P.C., Nori, F.: Speed limits for quantum gates in multiqubit systems. Phys. Rev. A 85, 052327 (2012)

    Article  ADS  Google Scholar 

  6. de Groot, P.C., Ashhab, S., Lupascu, A., DiCarlo, L., Nori, F., Harmans, C.J.P.M., Mooij, J.E.: Selective darkening of degenerate transitions for implementing quantum controlled-NOT gates. New J. Phys. 14, 073038 (2012)

    Article  Google Scholar 

  7. Zheng, S.B., Yang, C.P., Nori, F.: Arbitrary control of coherent dynamics for distant qubits in a quantum network. Phys. Rev. A 82, 042327 (2010)

    Article  ADS  Google Scholar 

  8. Yang, C.P., Su, Q.P., Liu, J.M.: Proposal for realizing a multiqubit tunable phase gate of one qubit simultaneously controlling n target qubits using cavity QED. Phys. Rev. A 86, 024301 (2012)

    Article  ADS  Google Scholar 

  9. Zheng, S.B.: Implementation of Toffoli gates with a single asymmetric Heisenberg XY interaction. Phys. Rev. A 87, 042318 (2013)

    Article  ADS  Google Scholar 

  10. Chen, C.Y., Feng, M., Gao, K.L.: Toffoli gate originating from a single resonant interaction with cavity QED. Phys. Rev. A 73, 064304 (2006)

    Article  ADS  Google Scholar 

  11. Lanyon, B.P., Barbieri, M., Almeida, M.P., Jennewein, T., Ralph, T.C., Resch, K.J., Pryde, G.J., O’Brien, J.L., Gilchrist, A., White, A.G.: Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 5, 134 (2009)

    Article  Google Scholar 

  12. DiVincenzo, D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015 (1995)

    Article  ADS  Google Scholar 

  13. Xiao, Y.F., Zou, X.B., Guo, G.C.: Implementing a conditional N-qubit phase gate in a largely detuned optical cavity. Phys. Rev. A 75, 014302 (2007)

    Article  ADS  Google Scholar 

  14. Xiao, Y.F., Zou, X.B., Guo, G.C.: One-step implementation of an N-qubit controlled-phase gate with neutral atoms trapped in an optical cavity. Phys. Rev. A 75, 054303 (2007)

    Article  ADS  Google Scholar 

  15. Zou, X.B., Xiao, Y.F., Li, S.B., Yang, Y., Guo, G.C.: Quantum phase gate through a dispersive atom-field interaction. Phys. Rev. A 75, 064301 (2007)

    Article  ADS  Google Scholar 

  16. Lin, G.W., Zou, X.B., Lin, X.M., Guo, G.C.: Robust and fast geometric quantum computation with multiqubit gates in cavity QED. Phys. Rev. A 79, 064303 (2009)

    Article  ADS  Google Scholar 

  17. Monz, T., Kim, K., Hansel, W., Riebe, M., Villar, A.S., Schindler, P., Chwalla, M., Hennrich, M., Blatt, R.: Realization of the quantum Toffoli gate with trapped ions. Phys. Rev. Lett. 102, 040501 (2009)

    Article  ADS  Google Scholar 

  18. Yang, W.L., Yin, Z.Q., Xu, Z.Y., Feng, M., Du, J.F.: One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Appl. Phys. Lett. 96, 241113 (2010)

    Article  ADS  Google Scholar 

  19. Zou, X.B., Kim, J., Lee, H.W.: Generation of two-mode nonclassical motional states and a Fredkin gate operation in a two-dimensional ion trap. Phys. Rev. A 63, 065801 (2001)

    Article  ADS  Google Scholar 

  20. Wang, B., Duan, L.M.: Implementation scheme of controlled SWAP gates for quantum fingerprinting and photonic quantum computation. Phys. Rev. A 75, 050304 (2007)

    Article  ADS  Google Scholar 

  21. Yang, C.P., Chu, S.I., Han, S.: Quantum information transfer and entanglement with SQUID qubits in cavity QED: a dark-state scheme with tolerance for nonuniform device parameter. Phys. Rev. Lett. 92, 117902 (2004)

    Article  ADS  Google Scholar 

  22. Zhang, X.L., Gao, K.L., Feng, M.: Preparation of cluster states and W states with superconducting quantum-interference-device qubits in cavity QED. Phys. Rev. A 74, 024303 (2006)

    Article  ADS  Google Scholar 

  23. Deng, Z.J., Gao, K.L., Feng, M.: Generation of N-qubit W states with rf SQUID qubits by adiabatic passage. Phys. Rev. A 74, 064303 (2006)

    Article  ADS  Google Scholar 

  24. Yang, C.P.: A proposal for implementing an n-qubit controlled-rotation gate with three-level superconducting qubit systems in cavity QED. J. Phys. Condens. Matter. 23, 225702 (2011)

    Article  ADS  Google Scholar 

  25. Shao, X.Q., Zheng, T.Y., Feng, X.L., Oh, C.H., Zhang, S.: One-step implementation of the genuine Fredkin gate in high-Q coupled three-cavity arrays. J. Opt. Soc. Am. B 31, 697 (2014)

    Article  ADS  Google Scholar 

  26. Fiurás̆ek, J.: Linear optical Fredkin gate based on partial-SWAP gate. Phys. Rev. A 78, 032317 (2008)

    Article  ADS  Google Scholar 

  27. Gong, Y.X., Guo, G.C., Ralph, T.C.: Methods for a linear optical quantum Fredkin gate. Phys. Rev. A 78, 012305 (2008)

    Article  ADS  Google Scholar 

  28. Fiurás̆ek, J.: Linear-optics quantum Toffoli and Fredkin gates. Phys. Rev. A 73, 062313 (2006)

    Article  ADS  Google Scholar 

  29. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756763 (1977)

    Article  MathSciNet  Google Scholar 

  30. Cao, X., Ai, Q., Sun, C.P., Nori, F.: The transition from quantum Zeno to anti-Zeno effects for a qubit in a cavity by varying the cavity frequency. Phys. Lett. A 376, 349 (2012)

    Article  ADS  MATH  Google Scholar 

  31. Ai, Q., Xu, D., Yi, S., Kofman, A.G., Sun, C.P., Nori, F.: Quantum anti-Zeno effect without wave function reduction. Sci. Rep. 3, 1752 (2013)

    ADS  Google Scholar 

  32. Zhang, W., Kofman, A.G., Zhuang, J., You, J.Q., Nori, F.: Quantum Zeno and anti-Zeno effects measured by transition probabilities. Phys. Lett. A 377, 1837 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  33. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  34. Facchi, P., Pascazio, S., Scardicchio, A., Schulman, L.S.: Zeno dynamics yields ordinary constraints. Phys. Rev. A 65, 012108 (2001)

    Article  ADS  Google Scholar 

  35. Facchi, P., Pascazio, S.: Quantum Zeno and inverse quantum Zeno effects. Prog. Opt. 42, 147217 (2001)

    Google Scholar 

  36. Pachos, J., Walther, H.: Quantum computation with trapped ions in an optical cavity. Phys. Rev. Lett. 89, 187903 (2002)

    Article  ADS  Google Scholar 

  37. Zhou, L., Yang, S., Liu, Y.X., Sun, C.P., Nori, F.: Quantum Zeno switch for single-photon coherent transport. Phys. Rev. A 80, 062109 (2009)

    Article  ADS  Google Scholar 

  38. Pachos, J.K., Beige, A.: Decoherence-free dynamical and geometrical entangling phase gates. Phys. Rev. A 69, 033817 (2004)

    Article  ADS  Google Scholar 

  39. Franson, J.D., Jacobs, B.C., Pittman, T.B.: Quantum computing using single photons and the Zeno effect. Phys. Rev. A 70, 062302 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  40. You H., Franson, J.D.: Theoretical comparison of quantum Zeno gates and nonlinear phase gates. arXiv:1008.1513 (1–14)

  41. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Yeon, K.H.: One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 374, 28 (2009)

    Article  ADS  MATH  Google Scholar 

  42. Zhang, S., Shao, X.Q., Chen, L., Zhao, Y.F., Yeon, K.H.: Robust \(\sqrt{swap}\) gate on nitrogen-vacancy centres via quantum Zeno dynamics. J. Phys. B At. Mol. Opt. Phys. 44, 075505 (2011)

    Article  ADS  Google Scholar 

  43. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Atomic quantum state transferring and swapping via quantum Zeno dynamics. J. Opt. Soc. Am. B 28, 2909 (2011)

    Article  ADS  Google Scholar 

  44. Wang, X.B., You, J.Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339 (2008)

    Article  ADS  Google Scholar 

  45. Wen, A.L., Guang, Y.H.: Deterministic generation of a three-dimensional entangled state via quantum Zeno dynamics. Phys. Rev. A 83, 022322 (2011)

    Article  ADS  Google Scholar 

  46. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Effective scheme for generation of two-dimensional cluster states via quantum Zeno dynamics. Eur. Phys. J. D 66, 11 (2012)

    Article  ADS  Google Scholar 

  47. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: One-step implementation of the Fredkin gate via quantum Zeno dynamics. Quan. Infor. Comput. 12, 0215 (2012)

    MathSciNet  Google Scholar 

  48. You, J.Q., Nori, F.: Superconducting circuits and quantum information. Phys. Today 58(11), 42 (2005)

    Article  Google Scholar 

  49. You, J.Q., Nori, F.: Atomic physics and quantum optics using superconducting circuits. Nature 474, 589 (2011)

    Article  ADS  Google Scholar 

  50. Buluta, I., Ashhab, S., Nori, F.: Natural and artificial atoms for quantum computation. Rep. Prog. Phys. 74, 104401 (2011)

    Article  ADS  Google Scholar 

  51. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: Superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    Article  ADS  Google Scholar 

  52. Tanamoto, T., Maruyama, K., Liu, Y.X., Hu, X., Nori, F.: Efficient purification protocols using iSWAP gates in solid-state qubits. Phys. Rev. A 78, 062313 (2008)

    Article  ADS  Google Scholar 

  53. Nori, F.: Quantum football. Science 325, 689 (2009)

    Article  Google Scholar 

  54. Facchi, P., Marmo, G., Pascazio, S.: Quantum Zeno dynamics and quantum Zeno sub-spaces. J. Phys. Conf. Ser. 196, 012017 (2009)

    Article  ADS  Google Scholar 

  55. Facchi, P., Pascazio, S.: Quantum Zeno subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  56. Shao, X.Q., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Deterministic generation of arbitrary multi-atom symmetric Dicke states by a combination of quantum Zeno dynamics and adiabatic passage. Europhys. Lett. 90, 50003 (2010)

    Article  ADS  Google Scholar 

  57. James, D.F., Jerke, J.: Effective Hamiltonian Theory and its applications in quantum information. Can. J. Phys. 85, 625 (2007)

    Article  ADS  Google Scholar 

  58. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  59. Tan, Sze M.: A computational toolbox for quantum and atomic optics. J. Opt. B 1, 424 (1999)

    Article  ADS  Google Scholar 

  60. Spillane, S.M., Kippenberg, T.J., Painter, O.J., Vahala, K.J.: Ideality in a fibertTaper-coupled microresonator system for application to cavity quantum electrodynamics. Phys. Rev. Lett. 91, 043902 (2003)

    Article  ADS  Google Scholar 

  61. Spillane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

  62. Buck, J.R., Kimble, H.J.: Optimal sizes of dielectric microspheres for cavity QED with strong coupling. Phys. Rev. A 67, 033806 (2003)

    Article  ADS  Google Scholar 

  63. Zheng, S.B.: Virtual-photon-induced quantum phase gates for two distant atoms trapped in separate cavities. Phys. Lett. A 94, 154101 (2009)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11105030, the Natural Science Foundation of Fuzhou University of China under Grant No. XRC-0976 and No. 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant Nos. JA11005, JA10009 and JA10039, the National Natural Science Foundation of Fujian Province of China under Grant Nos. 2010J01006 and 2012J01269, the Foundation of Ministry of Education of China under Grant No. 212085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, LC., Xia, Y. & Song, J. Experimentally optimized implementation of the Fredkin gate with atoms in cavity QED. Quantum Inf Process 14, 511–529 (2015). https://doi.org/10.1007/s11128-014-0884-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0884-x

Keywords

Navigation