Skip to main content
Log in

Maximally discordant separable two-qubit \(X\) states

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In a recent article, Gharibian (Phys Rev A 86:042106 2012) has conjectured that no two-qubit separable state of rank greater than two could be maximally non-classical (defined to be those which have normalized geometric discord 1/4) and asked for an analytic proof. In this work, we prove analytically that among the subclass of \(X\) states, there is a unique (up to local unitary equivalence) maximal separable state of rank two. For the general case, we derive some necessary conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Eisert, J., Plenio, M.: A comparison of entanglement measures. J. Mod. Opt. 46, 145–154 (1999). doi:10.1080/09500349908231260

    Article  ADS  Google Scholar 

  2. Verstraete, F., Audenaert, K., Moor, B.D.: Maximally entangled mixed states of two qubits. Phys. Rev. A 64, 012316 (2001). doi:10.1103/PhysRevA.64.012316

    Article  ADS  Google Scholar 

  3. Munro, W.J., James, D.F.V., White, A.G., Kwiat, P.G.: Maximizing the entanglement of two mixed qubits. Phys. Rev. A 64, 030302(R) (2001). doi:10.1103/PhysRevA.64.030302

    Article  ADS  Google Scholar 

  4. Miranowicz, A., Grudka, A.: Ordering two-qubit states with concurrence and negativity. Phys. Rev. A 70, 032326 (2004). doi:10.1103/PhysRevA.70.032326

    Article  ADS  Google Scholar 

  5. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001). doi:10.1103/PhysRevLett.88.017901

    Article  ADS  Google Scholar 

  6. Dakić, B., Vedral, V., Brukner, C.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010). doi:10.1103/PhysRevLett.105.190502

    Article  ADS  Google Scholar 

  7. Luo, S., Fu, S.: Geometric measure of quantum discord. Phys. Rev. A 82, 034302 (2010). doi:10.1103/PhysRevA.82.034302

    Article  MathSciNet  ADS  Google Scholar 

  8. Rana, S., Parashar, P.: Tight lower bound on geometric discord of bipartite states. Phys. Rev. A 85, 024102 (2012). doi:10.1103/PhysRevA.85.024102

    Article  ADS  Google Scholar 

  9. Hassan, A.S.M., Lari, B., Joag, P.S.: Tight lower bound to the geometric measure of quantum discord. Phys. Rev. A 85, 034302 (2012). doi:10.1103/PhysRevA.85.024302

    Article  ADS  Google Scholar 

  10. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011). doi:10.1103/PhysRevLett.106.120401

    Article  ADS  Google Scholar 

  11. Datta, A.: Studies on the role of entanglement in mixed-state quantum computation. Ph.D. Thesis. arXiv:0807.4490v1

  12. Gharibian, S., Piani, M., Adesso, G., Calsamiglia, J., Horodecki, P.: Characterizing quantumness via entanglement creation. Int. J. Quantum Inf. 9, 1701 (2011). doi:10.1142/S0219749911008258

    Article  MathSciNet  MATH  Google Scholar 

  13. Okrasa, M., Walczak, Z.: On two-qubit states ordering with quantum discords. EuroPhys. Lett. 98, 40003 (2012). doi:10.1209/0295-5075/98/40003

    Article  ADS  Google Scholar 

  14. Adhikari, S., Banerjee, S.: Operational meaning of discord in terms of teleportation fidelity. Phys. Rev. A 86, 062313 (2012). doi:10.1103/PhysRevA.86.062313

    Article  ADS  Google Scholar 

  15. Lang, M.D., Caves, C.M.: Quantum discord and the geometry of bell-diagonal states. Phys. Rev. Lett. 105, 150501 (2010). doi:10.1103/PhysRevLett.105.150501

    Article  ADS  Google Scholar 

  16. Galve, F., Giorgi, G.L., Zambrini, R.: Maximally discordant mixed states of two qubits. Phys. Rev. A 83, 012102 (2011). doi:10.1103/PhysRevA.83.012102

    Article  ADS  Google Scholar 

  17. Girolami, D., Adesso, G.: Interplay between computable measures of entanglement and other quantum correlations. Phys. Rev. A 84, 052110 (2011). doi:10.1103/PhysRevA.84.052110

    Article  ADS  Google Scholar 

  18. Girolami, D., Paternostro, M., Adesso, G.: Faithful nonclassicality indicators and extremal quantum correlations in two-qubit states. J. Phys. A Math. Theor. 44, 352002 (2011). doi:10.1088/1751-8113/44/35/352002

    Article  Google Scholar 

  19. Batle, J., Plastino, A., Plastino, A.R., Casas, M.: Peculiarities of quantum discord’s geometric measure. J. Phys. A Math. Theor. 44, 505304 (2011). doi:10.1088/1751-8113/44/50/505304

    Article  MathSciNet  ADS  Google Scholar 

  20. Al-Qasimi, A., James, D.F.V.: Comparison of the attempts of quantum discord and quantum entanglement to capture quantum correlations. Phys. Rev. A 83, 032101 (2011). doi:10.1103/PhysRevA.83.032101

    Article  ADS  Google Scholar 

  21. Batle, J., Casas, M., Plastino, A.: Correlated multipartite quantum states. Phys. Rev. A 87, 032318 (2013). doi:10.1103/PhysRevA.87.032318

    Article  ADS  Google Scholar 

  22. Chiuri, A., Vallone, G., Paternostro, M., Mataloni, P.: Extremal quantum correlations: experimental study with two-qubit states. Phys. Rev. A 84, 020304(R) (2011). doi:10.1103/PhysRevA.84.020304

    Article  ADS  Google Scholar 

  23. Fedrizzi, A., Skerlak, B., Paterek, T., de Almeida, M.P., White, A.G.: Experimental information complementarity of two-qubit states. New J. Phys. 13, 053038 (2011). doi:10.1088/1367-2630/13/5/053038

    Article  ADS  Google Scholar 

  24. Gharibian, S.: Quantifying nonclassicality with local unitary operations. Phys. Rev. A 86, 042106 (2012). doi:10.1103/PhysRevA.86.042106

    Article  ADS  Google Scholar 

  25. Miranowicz, A., Horodecki, P., Chhajlany, R.W., Tuziemski, J., Sperling, J.: Analytical progress on symmetric geometric discord: measurement-based upper bounds. Phys. Rev. A 86, 042123 (2012). doi:10.1103/PhysRevA.86.042123

    Article  ADS  Google Scholar 

  26. Dakić, B., et al.: Quantum discord as resource for remote state preparation. Nat. Phys. 8, 666–670 (2012). doi:10.1038/nphys2377

    Article  Google Scholar 

  27. Horodecki, P., Tuziemski, J., Mazurek P., Horodecki, R.: Can communication power of separable correlations exceed that of entanglement resource? arXiv:1306.4938v2

  28. De Vicent, J.I.: Separability criteria based on the Bloch representation of density matrices. Quantum Inf. Comput. 7, 624–638 (2007)

    MathSciNet  Google Scholar 

  29. Horodecki, R., Horodecki, M., Horodecki, P.: Violating Bell inequality by mixed spin-\(1/2\) states: necessary and sufficient condition. Phys. Lett. A 200, 340 (1995). doi: 10.1016/0375-9601(95)00214-N

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Bellomo, B., et al.: Unified view of correlations using the square-norm distance. Phys. Rev. A 85, 032104 (2012). doi:10.1103/PhysRevA.85.032104

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Swapan Rana.

Appendix: Proof of the optimization in Proposition 1

Appendix: Proof of the optimization in Proposition 1

We first note that the constraint (13a) implies \(abcd\ne 0\), \(a\ne c\), \(b\ne d\). Now, let us try to parameterize \((a,b,c,d)\) using the constraints. To absorb the first constraint, without loss of generality, we can take \(a=bk,c=dk,k>0\). Then, the constraint (13b) becomes

$$\begin{aligned} b+d=\frac{1}{k+1}, \end{aligned}$$
(19)

and we are left with only the following constraint

$$\begin{aligned} (a-c)^2+(b-d)^2&= 8bc\nonumber \\ \Rightarrow (b-d)^2(k^2+1)&= 8bdk, \end{aligned}$$
(20)

where we have just substituted \(a\) and \(c\) in terms of \(bk\) and \(dk\), respectively, in the first equation. Squaring (19) and subtracting (20) from it yields

$$\begin{aligned} 4bd=\frac{k^2+1}{(k+1)^4} \end{aligned}$$
(21)

Noting that \(ad=bdk\), we have to find the maximum of the function

$$\begin{aligned} f(k)=\frac{k(k^2+1)}{(k+1)^4} \end{aligned}$$

subject to \(k>0\). The derivatives are very easy to calculate. Indeed, \(f'(k)=0\) only at \(k=1\) and \(f'(1)=f''(1)=f'''(1)=0\), but \(f''''(1)=-3/16<0\). Hence, the unique maximum occurs at \(k=1\). From (19) and (21), this corresponds to the solution \(a=b=(2\pm \sqrt{2})/8,c=d=1/(32a)\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rana, S., Parashar, P. Maximally discordant separable two-qubit \(X\) states. Quantum Inf Process 13, 2815–2822 (2014). https://doi.org/10.1007/s11128-014-0865-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0865-0

Keywords

Navigation