Skip to main content
Log in

Binary construction of pure additive quantum codes with distance five or six

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

This paper discusses binary quantum stabilizer codes with distance five or six constructed from binary self-orthogonal codes using Steane construction. First, nineteen special binary one-generator quasi-cyclic self-orthogonal \([pk,k]\) codes with dual distance five or six for \(12 \le k \le 16\) are built. Second, a feasible algorithm for searching subcodes of linear codes and an extension strategy for pairs of nested self-orthogonal codes are proposed, then thirty-eight code pairs are designed from obtained quasi-cyclic self-orthogonal codes. Third, thirty-two good binary quantum stabilizer codes are constructed from the code pairs obtained through Steane construction. Thirty of them are previously known codes. In particular, two codes \([[52,31,6]]\) and \([[56,34,6]]\) have improved codes \([[52,31,5]]\) and \([[56,34,5]]\) constructed by quaternary construction, and thus, they are record breaking ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shor, P.W.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52, 2493–2496 (1995)

    Article  ADS  Google Scholar 

  2. Steane, A.M.: Error correcting codes in quantum theory. Phys. Rev. Lett. 77, 793–797 (1996)

    Article  ADS  MATH  MathSciNet  Google Scholar 

  3. Calderbank, A.R., Shor, P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098–1105 (1996)

    Article  ADS  Google Scholar 

  4. Steane, A.M.: Enlargement of calderbank-shor-steane quantum codes. IEEE Trans. Inf. Theory 45, 2492–2495 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Calderbank, A.R., Rains, E.M., Shor, P.W., Sloane, N.J.A.: Quantum error correction via codes over GF(4). IEEE Trans. Inf. Theory 44, 1369–1387 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  6. Li, R., Li, X.: Binary construction of quantum codes of minimum distances five and six. Discrete Math. 308, 1603–1611 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Li, R., Li, X.: Binary construction of quantum codes of minimum distance three and four. IEEE Trans. Inf. Theory 50(6), 1331–1335 (2004)

    Article  MATH  Google Scholar 

  8. Grassl, M.: Bounds on the minimum distance of additive quantum codes. http://www.codetables.de/

  9. Gulliver, T.A., Bhargava, V.K.: Some best rate \(1/p\) and rate \((p-1)/p\) systematic quasi-cyclic codes. IEEE Trans. Inf. Theory 37(3), 552–555 (1991)

    Article  MathSciNet  Google Scholar 

  10. Gulliver, T.A., Bhargava, V.K.: Nine good rate \((m-1)/pm\) quasi-cyclic codes. IEEE Trans. Inf. Theory 38(4), 1366–1369 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  11. Heijnen, P., Tilborg, H.V., Verhoeff, T., Weijs, S.: Some new binary quasi-cyclic codes. IEEE Trans. Inf. Theory 44(5), 1994–1996 (1998)

    Article  MATH  Google Scholar 

  12. Daskalov, R., Hristov, P.: New binary one-generator quasi-cyclic codes. IEEE Trans. Inf. Theory 49(11), 3001–3005 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chen, E.Z.: New quasi-cyclic codes from simplex codes. IEEE Trans. Inf. Theory 53(3), 1193–1196 (2007)

    Article  Google Scholar 

  14. Grassl, M., White, G.S.: New codes from chains of quasi-cyclic codes. In: Proceedings of 2005 IEEE International Symposium on Information Theory 2005, pp. 2095–2099. (2005)

  15. Conan, J., Séguin, S.: Structural properties and enumeration of quasi cyclic codes. Appl Algebra Eng Commun Comput 4, 25–39 (1993)

    Article  MATH  Google Scholar 

  16. Lally, K., Fitzpatrick, P.: Algebraic structure of quasicyclic codes. Discrete Appl. Math. 111, 157–175 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Ling, S., Sole, P.: On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Trans. Inf. Theory 47(7), 2751–2759 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Ling, S., Sole, P.: On the algebraic structure of quasi-cyclic codes II: chain rings. Des. Codes Cryptogr. 30, 113–130 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  19. Ling, S., Sole, P.: On the algebraic structure of quasi-cyclic codes III: generator theory. IEEE Trans. Inf. Theory 51(7), 2692–2700 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Cayrel, P.L., Chabot, C., Necer, A.: Quasi-cyclic codes as codes over rings of matrices. Finite Fields Appl. 16, 100–115 (2010)

  21. Cao, Y., Gao, J.: Constructing quasi-cyclic codes from linear algebra theory. Des. Codes Cryptogr. 67(1), 59–75 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  22. Huffman, W.C., Pless, V.: Fundamentals of Error-Correcting Codes. Cambridge University Press, New York (2003)

    Book  MATH  Google Scholar 

Download references

Acknowledgments

The authors are very grateful to the anonymous referees for their valuable comments and suggestions, which helped to improve the manuscript significantly. This work is supported by National Natural Science Foundation of China under Grant No.11471011 and Science Foundation for young teachers in Science College, Air Force Engineering University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to WeiLiang Wang.

Appendices

Appendix 1: Proof for Lemma 3

Proof

For binary self-orthogonal code \(C = [n,k]\), the equations \(GG^T=\mathbf{0}_{k \times k}\) and \(G\mathbf{1}^T_n = \mathbf{0}_{k \times 1}\) hold. Because \(d(C^{\perp }) = d^{\perp }\), any \(d^{\perp } - 1\) columns in \(G\) are linearly independent and there exist \(d^{\perp }\) linearly dependent columns in \(G\). Suppose \(G = \left( \begin{array}{cccc}\alpha _1&\alpha _2&\cdots&\alpha _n\end{array} \right) \), then

$$\begin{aligned} G_1 = \left( \begin{array}{cccc} \alpha _1&{}\alpha _2&{}\cdots &{} \alpha _n\\ 1&{}1&{}\cdots &{} 1 \end{array} \right) , \quad G_{2} = \left( \begin{array}{c|cccc} 0&{}\alpha _1&{}\alpha _2&{}\cdots &{}\alpha _n\\ 1&{}1&{}1&{}\cdots &{} 1 \end{array} \right) =(L \mid R), \end{aligned}$$

where \(\alpha _j\) is the binary \(k\)-dimensional column vector for \(j = 1, 2, \cdots , n\). Let \(\alpha _{j_1}, \alpha _{j_2}, \cdots , \alpha _{j_{d^{\perp }}}\) be the linearly dependent columns in \(G\) such that

$$\begin{aligned} \sum \limits _{i=1}^{d^{\perp }} {\alpha _{j_i}} = \mathbf{0}_{k \times 1}. \end{aligned}$$

In order to prove the conclusions for \(C_i\), the linear dependence of all rows in \(G_i\), the self-orthogonality of \(C_i\), and the number of linear independent or dependent columns in \(G_i\) must be verified step by step.

(1). Firstly, all rows in \(G_1\) are linearly independent because \(\mathbf{1}_n \notin C\). Secondly, the fact that \(\mathbf{1}_n\mathbf{1}^T_n = 0\) for even \(n\) can deduce the equation

$$\begin{aligned} G_1G^T_1 =\left( \begin{array}{c} G\\ \mathbf{1}_n\\ \end{array} \right) \left( \begin{array}{cc} G^T &{} \mathbf{1}^T_n\\ \end{array} \right) =\left( \begin{array}{cc} GG^T&{}G\mathbf{1}^T_n \\ \mathbf{1}_nG^T&{}\mathbf{1}_n\mathbf{1}^T_n \end{array} \right) =\mathbf{0}_{(k+1) \times (k+1)}. \end{aligned}$$

They mean that \(G_1\) can produce a binary self-orthogonal code \(C_1 = [n, k+1]\).

Finally, we determine \(d(C^{\perp }_1)\) under the assumptions of even \(d^{\perp }\) and odd \(d^{\perp }\), respectively.

Case I: \(d^{\perp }\) is even. The conclusion that any \(d^{\perp } - 1\) columns in \(G\) are linearly independent implies that any \(d^{\perp } - 1\) columns in \(G_1\) are linearly independent. Furthermore, the equation \(\sum \nolimits _{i=1}^{d^{\perp }} {\left( \begin{array}{c}\alpha _{j_i}\\ 1\end{array} \right) } = \mathbf{0}_{(k+1) \times 1}\) holds because \(d^{\perp }\) is even, i.e., \(G_1\) has a set of \(d^{\perp }\) linearly dependent columns. It means that \(d(C^{\perp }_1)\) equals \(d^{\perp }\) if \(d^{\perp }\) is even.

Case II: \(d^{\perp }\) is odd. Let \(\sum \nolimits _{i=1}^{d^{\perp }} {k_i\left( \begin{array}{c}\alpha _{l_i}\\ 1\end{array} \right) } = \mathbf{0}_{(k+1) \times 1}\), where \(k_i \in \mathbb {F}_2\) and \(\left( \begin{array}{c}\alpha _{l_i}\\ 1\end{array} \right) \) is the column in \(G_1\) for \(i = 1, 2, \cdots , d^{\perp }\). The equation is equivalent to a equation system \(\sum \nolimits _{i=1}^{d^{\perp }} {k_i\alpha _{l_i}} = \mathbf{0}_{k \times 1}\) and \(\sum \nolimits _{i=1}^{d^{\perp }} {k_i} = 0\).

If there exist some \(k_i\)’s such that \(k_i = 1\), then the number of such \(k_i\)’s must be even and less than or equal to \(d^{\perp } - 1\) because \(d^{\perp }\) is odd. We can conclude that there are at most \(d^{\perp } - 1\) linearly dependent columns in \(G\). It is in contradiction with \(d(C^{\perp }) = d^{\perp }\). That is, all \(k_i = 0\) for \(i = 1, 2, \cdots , d^{\perp }\), which implies any \(d^{\perp }\) columns in \(G_1\) are linearly independent in this case. It further states that \(d(C^{\perp }_1)\) is greater than \(d^{\perp }\) if \(d^{\perp }\) is odd.

(2). It is obvious that all rows in \(G_2\) are linearly independent and the following equation holds because \(\mathbf{1}_n\mathbf{1}^T_n = 1\) for odd \(n\).

$$\begin{aligned} G_2G^T_2 = \left( \begin{array}{c@{\quad }c} 0 &{} G\\ 1 &{}\mathbf{1}_n\\ \end{array} \right) \left( \begin{array}{c@{\quad }c} 0 &{} 1\\ G^T &{}\mathbf{1}^T_n\\ \end{array} \right) = \left( \begin{array}{c@{\quad }c} GG^T &{} G\mathbf{1}^T_n\\ \mathbf{1}^T_nG &{}1 + \mathbf{1}_n\mathbf{1}^T_n\\ \end{array} \right) = \mathbf{0}_{(k + 1) \times (k + 1)}. \end{aligned}$$

Thus, \(G_2\) produces a binary self-orthogonal code \(C_2 = [n + 1, k + 1]\). We subsequently determine \(d(C^{\perp }_1)\) as below.

Case I: \(d^{\perp }\) is even.

There are two types for any \(d^{\perp } - 1\) columns in \(G_2\).

Subcase I.1: All \(d^{\perp } - 1\) columns come from the submatrix \(R\) in \(G_2\). In this subcase, the fact that any \(d^{\perp } - 1\) columns in \(G\) are linearly independent implies that any \(d^{\perp } - 1\) columns in \(R\) are linearly independent.

Subcase I.2: The one comes from the submatrix \(L\) and the rest \(d^{\perp } - 2\) columns come from the submatrix \(R\). In this subcase, let

$$\begin{aligned} k_0\left( \begin{array}{c}0\\ 1\end{array} \right) + \sum \limits _{i=1}^{d^{\perp } - 2} {k_i\left( \begin{array}{c}\alpha _{l_i}\\ 1\end{array} \right) } = \mathbf{0}_{(k+1) \times 1}, \end{aligned}$$

where \(k_0, k_i \in \mathbb {F}_2\) and \(\left( \begin{array}{c}\alpha _{l_i}\\ 1\end{array} \right) \) is the column in \(R\) for \(i = 1, 2, \cdots , d^{\perp } - 2\). The equation is equivalent to a equation system \(\sum \nolimits _{i=1}^{d^{\perp } - 2} {k_i\alpha _{l_i}} = \mathbf{0}_{k \times 1}\) and \(k_0 + \sum \nolimits _{i=1}^{d^{\perp } - 2} {k_i} = 0\). The equation \(\sum \nolimits _{i=1}^{d^{\perp } - 2} {k_i\alpha _{l_i}} = \mathbf{0}_{k \times 1}\) implies \(k_i = 0\) for \(i = 1, 2, \cdots , d^{\perp } - 2\) because \(d(C^{\perp }) = d^{\perp }\). Furthermore, the equation \(k_0 + \sum \nolimits _{i=1}^{d^{\perp } - 2} {k_i} = 0\) and the conclusion \(k_i = 0\) for \(i = 1, 2, \cdots , d^{\perp } - 2\) lead to that \(k_0 = 0\).

It shows that any \(d^{\perp } - 1\) columns in \(G_2\) are linearly independent in both subcases.

The equation \(\sum \nolimits _{i=1}^{d^{\perp }} {\alpha _{j_i}} = \mathbf{0}_{k \times 1}\) indicates the conclusion \(\sum \nolimits _{i=1}^{d^{\perp }} {\left( \begin{array}{c}\alpha _{l_i}\\ 1\end{array} \right) } = \mathbf{0}_{(k+1) \times 1}\) because \(d^{\perp }\) is even.

So, the conclusion of \(d(C^{\perp }_2) = d^{\perp }\) holds in this case.

Case II: \(d^{\perp }\) is odd. There are two types for any \(d^{\perp }\) columns in \(G_2\).

Subcase II.1: All \(d^{\perp }\) columns come from the submatrix \(R\) in \(G_2\). The proof procedure for linearly independence of these columns is similar to Case II in (1).

Subcase II.2: The one comes from the submatrix \(L\) and the rest \(d^{\perp } - 1\) columns come from the submatrix \(R\). The discussion for this subcase is similar to subcase I.2 in (2).

The fact that \(\left( \begin{array}{c} 0\\ 1 \end{array} \right) + \sum \nolimits _{i=1}^{d^{\perp }} {\left( \begin{array}{c}\alpha _{l_i}\\ 1\end{array} \right) } = \mathbf{0}_{(k+1) \times 1}\) for odd \(d^{\perp }\) declares the existence of \(d^{\perp } + 1\) linearly dependent columns in \(G_2\).

So, the conclusion that \(d(C^{\perp }_2) = d^{\perp } + 1\) holds if \(d^{\perp }\) is odd.

Appendix 2: Binary quasi-cyclic self-orthogonal codes

See Table 2.

Table 2 Binary quasi-cyclic self-orthogonal codes with dual distance five or six

Appendix 3: Dimensionality reduction matrices

  1. 1.

    \(k=12\)

    • \(n=36,48\)

      $$\begin{aligned} T^{(36)}_{6 \times 12}= \begin{pmatrix} 100000001100\\ 010010010111\\ 001000011110\\ 000110010110\\ 000001001101\\ 000000110001 \end{pmatrix}, \quad T^{(48)}_{6 \times 12}= \begin{pmatrix} 100000111011\\ 010000100110\\ 001000010011\\ 000100110010\\ 000010011001\\ 000001110111 \end{pmatrix}. \end{aligned}$$
      (10)
  2. 2.

    \(k=13\)

    • \(n=39\)

      $$\begin{aligned} T^{(39)}_{12 \times 13}= \begin{pmatrix} 1000000000001\\ 0100000000001\\ 0010000000001\\ 0001000000001\\ 0000100000001\\ 0000010000001\\ 0000001000001\\ 0000000100001\\ 0000000010001\\ 0000000001001\\ 0000000000101\\ 0000000000011 \end{pmatrix}, \quad T^{(39)}_{6 \times 12}= \begin{pmatrix} 100000100111\\ 010000010010\\ 001000111001\\ 000100011101\\ 000010111101\\ 000001000010 \end{pmatrix}. \end{aligned}$$
      (11)
    • \(n=52\)

      $$\begin{aligned} T^{(52)}_{12 \times 13}= \begin{pmatrix} 1000000000001\\ 0100000000001\\ 0010000000001\\ 0001000000001\\ 0000100000001\\ 0000010000001\\ 0000001000001\\ 0000000100001\\ 0000000010001\\ 0000000001001\\ 0000000000101\\ 0000000000011 \end{pmatrix}, \quad T^{(52)}_{7 \times 12}= \begin{pmatrix} 100000000111\\ 010000100101\\ 001000100001\\ 000100001110\\ 000010001001\\ 000001000011\\ 000000010101 \end{pmatrix}. \end{aligned}$$
      (12)
    • \(n=65\)

      $$\begin{aligned} T^{(65)}_{8 \times 13}= \begin{pmatrix} 1000000000001\\ 0100000000100\\ 0010000011100\\ 0001000011111\\ 0000100000010\\ 0000010001000\\ 0000001000010\\ 0000000100100 \end{pmatrix}. \end{aligned}$$
      (13)
  3. 3.

    \(k=14\)

    • \(n=42\)

      $$\begin{aligned} T^{(42)}_{13 \times 14}= \begin{pmatrix} 10000000000001\\ 01000000000000\\ 00100000000001\\ 00010000000000\\ 00001000000001\\ 00000100000000\\ 00000010000000\\ 00000001000000\\ 00000000100001\\ 00000000010000\\ 00000000001001\\ 00000000000100\\ 00000000000011 \end{pmatrix}, \quad T^{(42)}_{6 \times 13}= \begin{pmatrix} 1000001101110\\ 0100000101110\\ 0010000011011\\ 0001001110110\\ 0000101011101\\ 0000010011101 \end{pmatrix}. \end{aligned}$$
      (14)
    • \(n=56\)

      $$\begin{aligned} T^{(56)}_{13 \times 14}= \begin{pmatrix} 10000000000000\\ 01000000000010\\ 00100000000010\\ 00010000000010\\ 00001000000010\\ 00000100000000\\ 00000010000000\\ 00000001000010\\ 00000000100010\\ 00000000010010\\ 00000000001000\\ 00000000000110\\ 00000000000001 \end{pmatrix}, \quad T^{(56)}_{7 \times 13}= \begin{pmatrix} 1000000001000\\ 0100000101101\\ 0010000010101\\ 0001000010011\\ 0000100100101\\ 0000010111110\\ 0000001001010\\ \end{pmatrix}. \end{aligned}$$
      (15)
    • \(n=70\)

      $$\begin{aligned} T^{(70)}_{8 \times 14}= \begin{pmatrix} 10000000111110\\ 01000000101101\\ 00100000111011\\ 00010000110111\\ 00001000110110\\ 00000100000010\\ 00000010010101\\ 00000001000001\\ \end{pmatrix}. \end{aligned}$$
      (16)
    • \(n=84\)

      $$\begin{aligned} T^{(84)}_{12 \times 14}= \begin{pmatrix} 10000000000010\\ 01000000000001\\ 00100000000010\\ 00010000000001\\ 00001000000010\\ 00000100000001\\ 00000010000010\\ 00000001000001\\ 00000000100010\\ 00000000010001\\ 00000000001010\\ 00000000000101\\ \end{pmatrix}, \quad T^{(84)}_{8 \times 12}= \begin{pmatrix} 100000001101\\ 010000000010\\ 001000001101\\ 000100001000\\ 000010000010\\ 000001001011\\ 000000101000\\ 000000010110\\ \end{pmatrix}. \end{aligned}$$
      (17)
  4. 4.

    \(k=15\)

    • \(n=45\)

      $$\begin{aligned} T^{(45)}_{14 \times 15}= \begin{pmatrix} 100000000000000\\ 010000000000000\\ 001000000000001\\ 000100000000001\\ 000010000000001\\ 000001000000000\\ 000000100000001\\ 000000010000001\\ 000000001000001\\ 000000000100001\\ 000000000010001\\ 000000000001001\\ 000000000000100\\ 000000000000010 \end{pmatrix}, \quad T^{(45)}_{7 \times 14}= \begin{pmatrix} 10000001100010\\ 01000000100000\\ 00100000110010\\ 00010000110110\\ 00001000111100\\ 00000101001011\\ 00000011000111 \end{pmatrix}. \end{aligned}$$
      (18)
    • \(n=60\)

      $$\begin{aligned} T^{(60)}_{14 \times 15}= \begin{pmatrix} 100000000000000\\ 010000000000001\\ 001000000000001\\ 000100000000001\\ 000010000000000\\ 000001000000001\\ 000000100000001\\ 000000010000001\\ 000000001000001\\ 000000000100000\\ 000000000010001\\ 000000000001001\\ 000000000000101\\ 000000000000010 \end{pmatrix}, \quad T^{(60)}_{7 \times 14}= \begin{pmatrix} 10000001100101\\ 01000001011001\\ 00100000100010\\ 00010000111011\\ 00001000011110\\ 00000100001100\\ 00000010001100\\ \end{pmatrix}. \qquad \end{aligned}$$
      (19)
    • \(n=75, 90\)

      $$\begin{aligned} T^{(75)}_{8 \times 15}= \begin{pmatrix} 100000001011010\\ 010000001011110\\ 001000001001111\\ 000100000000001\\ 000010000101001\\ 000001000100111\\ 000000101001010\\ 000000010010101\ \end{pmatrix}, \quad T^{(90)}_{9 \times 15}= \begin{pmatrix} 100000000111011\\ 010000001111000\\ 001000000111111\\ 000100001001110\\ 000010001111011\\ 000001000111000\\ 000000100111101\\ 000000011011100\\ \end{pmatrix}.\qquad \end{aligned}$$
      (20)
    • \(n=105\)

      $$\begin{aligned} T^{(105)}_{9 \times 15}= \begin{pmatrix} 100000000010000\\ 010000000101001\\ 001000000101111\\ 000100000010110\\ 000010000101010\\ 000001000111011\\ 000000100111000\\ 000000010101010\\ 000000001001101 \end{pmatrix}. \end{aligned}$$
      (21)
  5. 5.

    \(k=16\)

    • \(n=64\)

      $$\begin{aligned} T^{(64)}_{14 \times 16}= \begin{pmatrix} 1000000000000010\\ 0100000000000010\\ 0010000000000001\\ 0001000000000010\\ 0000100000000001\\ 0000010000000001\\ 0000001000000010\\ 0000000100000001\\ 0000000010000001\\ 0000000001000001\\ 0000000000100001\\ 0000000000010001\\ 0000000000001001\\ 0000000000000101 \end{pmatrix}, \quad T^{(64)}_{7 \times 14}= \begin{pmatrix} 1000000110110111\\ 0100000111100010\\ 0010000011100000\\ 0001000001010010\\ 0000100001011101\\ 0000010011000100\\ 0000001111001010 \end{pmatrix}.\qquad \end{aligned}$$
      (22)
    • \(n=80\)

      $$\begin{aligned} T^{(80)}_{8 \times 16}= \begin{pmatrix} 1000000001011010\\ 0100000000101011\\ 0010000000111100\\ 0001000001000000\\ 0000100010010100\\ 0000010010001100\\ 0000001001001011\\ 0000000101110011\\ \end{pmatrix}. \end{aligned}$$
      (23)
    • \(n=96\)

      $$\begin{aligned} T^{(96)}_{15 \times 16}= \begin{pmatrix} 1000000000000000\\ 0100000000000000\\ 0010000000000000\\ 0001000000000001\\ 0000100000000001\\ 0000010000000001\\ 0000001000000000\\ 0000000100000000\\ 0000000010000001\\ 0000000001000000\\ 0000000000100001\\ 0000000000010001\\ 0000000000001001\\ 0000000000000101\\ 0000000000000010 \end{pmatrix}, \quad T^{(96)}_{9 \times 15}= \begin{pmatrix} 100000000010111\\ 010000000110010\\ 001000000010100\\ 000100000011111\\ 000010000100011\\ 000001000100010\\ 000000100101010\\ 000000010110000\\ 000000001010100\\ \end{pmatrix}.\qquad \end{aligned}$$
      (24)
    • \(n=112, 128\)

      $$\begin{aligned} T^{(112)}_{9 \times 16}= \begin{pmatrix} 1000000000101011\\ 0100000000110011\\ 0010000000001000\\ 0001000000010100\\ 0000100001101100\\ 0000010000001110\\ 0000001000011100\\ 0000000101010011\\ 0000000010101111 \end{pmatrix}, \quad T^{(128)}_{9 \times 16}= \begin{pmatrix} 1000000000110101\\ 0100000001101100\\ 0010000001111001\\ 0001000001001111\\ 0000100001001000\\ 0000010000101110\\ 0000001001001000\\ 0000000100100111\\ 0000000010101010 \end{pmatrix}.\qquad \end{aligned}$$
      (25)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Wang, W. & Li, R. Binary construction of pure additive quantum codes with distance five or six. Quantum Inf Process 14, 183–200 (2015). https://doi.org/10.1007/s11128-014-0848-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0848-1

Keywords

Navigation