Skip to main content
Log in

Deterministic generation of singlet states for \(N\)-atoms in coupled cavities via quantum Zeno dynamics

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We propose an efficient scheme to drive two atoms in two coupled cavities into a two-atom singlet state via quantum Zeno dynamics and virtual excitations by one step. Then, we convert the two-atom singlet state into a three-atom singlet state in three coupled bimodal cavities with the same principle. We also discuss the influence of decoherence induced by cavity decay and atomic spontaneous emission by numerical calculation. This scheme is robust against both the cavity decay and atomic spontaneous emission since there are no excited cavity fields involved during the operation process, and the atoms are only virtually excited. Actually, if multi-level atoms and multi-mode cavities are applicable, we can convert the (\(n-1\))-atom (\(n\ge 3\)) singlet state into a \(n\)-atom singlet state in coupled cavity arrays with the same principle in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, p. 57. Cambridge University Press, Cambridge, MA (2000)

    MATH  Google Scholar 

  2. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Gisin, N., Massar, S.: Optimal quantum cloning machines. Phys. Rev. Lett. 79, 2153 (1993)

    Article  ADS  Google Scholar 

  5. Cabello, A.: \(N\)-particle \(N\)-level singlet states: some properties and applications. Phys. Rev. Lett. 89, 100402 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Mermin, N.D.: Quantum mechanics vs local realism near the classical limit: A Bell inequality for spin \(s\). Phys. Rev. D 22, 356 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  7. Cabello, A.: Supersinglets. J. Mod. Opt. 50, 1049 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Hillery, M., Bužek, V.: Singlet states and the estimation of eigenstates and eigenvalues of an unknown controlled-U gate. Phys. Rev. A 64, 042303 (2001)

    Article  ADS  Google Scholar 

  9. Jin, G.S., Li, S.S., Feng, S.L., Zheng, H.Z.: Generation of a supersinglet of three three-level atoms in cavity QED. Phys. Rev. A 71, 034307 (2005)

    Article  ADS  Google Scholar 

  10. Lin, G.W., Ye, M.Y., Chen, L.B., Du, Q.H., Lin, X.M.: Generation of the singlet state for three atoms in cavity QED. Phys. Rev. A 76, 014308 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  11. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Zhao, Y.F., Yeon, K.H.: Converting two-atom singlet state into three-atom singlet state via quantum Zeno dynamics. New J. Phys. 12, 023040 (2010)

    Article  ADS  Google Scholar 

  12. Shi, Z.C., Xia, Y., Song, J., Song, H.S.: Generation of three-atom singlet state in a bimodal cavity via quantum Zeno dynamics. Quantum Inf. Process. 12, 411 (2013)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  13. Lu, M., Xia, Y., Song, J., Song, H.S.: Driving three atoms into a singlet state in an optical cavity via adiabatic passage of a dark state. J. Phys. B At. Mol. Opt. Phys. 46, 015502 (2013)

    Article  ADS  Google Scholar 

  14. von Neumann, J.: Die Mathematische Grundlagen der Quantenmechanik. Springer, Berlin (1932)

    MATH  Google Scholar 

  15. Misra, B., Sudarshan, E.C.G.: The Zeno’s paradox in quantum theory. J. Math. Phys. 18, 756 (1977)

    Article  MathSciNet  ADS  Google Scholar 

  16. Kwiat, P., Weinfurter, H., Herzog, T., Zeilinger, A.: Interaction-free measurement. Phys. Rev. Lett. 74, 4763 (1995)

    Article  ADS  Google Scholar 

  17. Streed, E.W., Mun, J., Boyd, M., Gretchen, K., Campbell, G.K., Medley, P., Ketterle, W., Pritchard, D.E.: Continuous and pulsed quantum Zeno effect. Phys. Rev. Lett. 97, 260402 (2006)

    Article  ADS  Google Scholar 

  18. Itano, W.M., Heinzen, D.J., Bollinger, J.J., Wineland, D.J.: Quantum Zeno effect. Phys. Rev. A 41, 2295 (1990)

    Article  ADS  Google Scholar 

  19. Facchi, P., Gorini, V., Marmo, G., Pascazio, S., Sudarshan, E.C.G.: Quantum Zeno dynamics. Phys. Lett. A 275, 12 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Facchi, P., Pascazio, S.: Quantum Zeno Subspaces. Phys. Rev. Lett. 89, 080401 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Beige, A., Braun, D., Knight, P.L.: Driving atoms into decoherence-free states. New J. Phys. 2, 22 (2000)

    Article  ADS  Google Scholar 

  22. Azuma, H.: Interaction-free generation of entanglement. Phys. Rev. A 68, 022320 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  23. Chen, R.X., Shen, L.T.: Interaction-free generation of entanglement. Phy. Lett. A 375, 3840 (2011)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Wang, X.B., You, J.Q., Nori, F.: Quantum entanglement via two-qubit quantum Zeno dynamics. Phys. Rev. A 77, 062339 (2008)

    Article  ADS  Google Scholar 

  25. Shao, X.Q., Wang, H.F., Chen, L., Zhang, S., Yeon, K.H.: One-step implementation of the Toffoli gate via quantum Zeno dynamics. Phys. Lett. A 374, 28 (2009)

    Article  ADS  MATH  Google Scholar 

  26. Huang, Y.P., Moore, M.G.: Interaction- and measurement-free quantum Zeno gates for universal computation with single-atom and single-photon qubits. Phys. Rev. A 77, 062332 (2008)

    Article  ADS  Google Scholar 

  27. Yang, R.C., Li, G., Zhang, T.C.: Robust atomic entanglement in two coupled cavities via virtual excitations and quantum Zeno dynamics. Quantum Inf. Process. 12, 493 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Spollane, S.M., Kippenberg, T.J., Vahala, K.J., Goh, K.W., Wilcut, E., Kimble, H.J.: Ultrahigh-Q toroidal microresonators for cavity quantum electrodynamics. Phys. Rev. A 71, 013817 (2005)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China under Grant No. 11105030, the Natural Science Foundation of Fuzhou University of China under Grant Nos. XRC-0976 and 2010-XQ-28, the funds from Education Department of Fujian Province of China under Grant Nos. JA11005, JA10009 and JA10039, the National Natural Science Foundation of Fujian Province of China under Grant Nos. 2010J01006 and 2012J01269, the Foundation of Ministry of Education of China under Grant No. 212085.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, YH., Xia, Y. & Song, J. Deterministic generation of singlet states for \(N\)-atoms in coupled cavities via quantum Zeno dynamics. Quantum Inf Process 13, 1857–1877 (2014). https://doi.org/10.1007/s11128-014-0772-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0772-4

Keywords

Navigation