Skip to main content
Log in

Some physics and system issues in the security analysis of quantum key distribution protocols

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we review a number of issues on the security of quantum key distribution (QKD) protocols that bear directly on the relevant physics or mathematical representation of the QKD cryptosystem. It is shown that the cryptosystem representation itself may miss out many possible attacks, which are not accounted for in the security analysis and proofs. Hence, the final security claims drawn from such analysis are not reliable, apart from foundational issues about the security criteria that are discussed elsewhere. The cases of continuous-variable QKD and multi-photon sources are elaborated upon.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zinden, H.: Quantum cryptography. Rev. Mod. Phys. 74, 145 (2002)

    Article  ADS  Google Scholar 

  2. Scarani, V., Bechmann-Pasquinucci, H., Cerf, N.J., Dusek, M., Lutkenhaus, N., Peev, M.: The security of quantum key distribution. Rev. Mod. Phys. 81, 1301 (2009)

    Article  ADS  Google Scholar 

  3. Yuen, H.P.: Key generation: foundation and a new quantum approach. IEEE J. SEl. Top. Quantum Electron. 15, 1630 (2009)

    Article  Google Scholar 

  4. Yuen, H.P.: Fundamental quantitative security in quantum key distribution. Phys. Rev. A 82, 062304 (2010)

    Article  ADS  Google Scholar 

  5. Yuen, H.P.: Essential lack of security proof in quantum key distribution. arXiv:1310.0842v2 (2013). In: Proceedings of the SPIE Conference on Quantum Physics-Based Information Security held in Dresden, Germany (Sept. 23–24, 2013)

  6. H.P. Yuen: Can quantum key distribution be secure. arXiv: 1405.0457 (2014)

  7. Gerhardt, I., Liu, Q., Lamas-Linares, A., Skaar, J., Kursiefer, C., Makarov, V.: Fullfield implementation of a perfect eavesdropper on a quantum cryptography system. Nat. Commun. 2, 349 (2011)

    Article  ADS  Google Scholar 

  8. Myers, J.M., Madjid, F.H.: Gaps between equations and experiments in quantum cryptography. I. Opt. B: Quant. Semiclass. Opt. 4, 5109 (2002)

    Google Scholar 

  9. Garg, A., Mermin, N.D.: Detector inefficiencies in the Einstein-Podolsky-Rosen experiment. Phys. Rev. D 35, 3831 (1987)

    Article  ADS  Google Scholar 

  10. Yuen, H.P.: Quantum amplifiers, quantum duplicators, and quantum cryptography. Quantum Semiclass. Opt. 8, 939 (1996)

    Article  ADS  Google Scholar 

  11. Yuen, H.P.: Effect of transmission loss on the fundamental security of quantum key distribution, arXiv:1109.1049 (2011)

  12. Grosshans, F., Grangier, P.: Continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 88, 057902 (2002)

    Article  ADS  Google Scholar 

  13. Grosshans, F., Van Assche, G., Wenger, J., Brouri, R., Cerf, N.J., Grangier, P.: Quantum key distribution using Gaussian-modulated coherent states. Nature 471, 238 (2003)

    Article  ADS  Google Scholar 

  14. Yuen, H.P.: Fundamental security issues in continuous variable quantum key distribution, arXiv:1208.5827 (2012)

  15. Yuen, H.P., Shapiro, J.H.: Optical communications with two-photon coherent states-III: quantum measurements realizable with photoemissive detectors. IEEE Trans. Inform. Theory IT–26, 78 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  16. Namiki, R., Hirano, T.: Practical limitation for continuous variable quantum cryptography using coherent states. Phys. Rev. Lett. 92, 117901 (2004)

    Article  ADS  Google Scholar 

  17. Namiki, R., Hirano, T.: Security of continuous-variable quantum cryptography using coherent states: decline of postdetection advantage. Phys. Rev. A 72, 024301 (2005)

    Article  ADS  Google Scholar 

  18. Lodewyck, J., Debuisschert, T., Garcia-Patron, R., Tualle-Brouri, R., Cerf, N.J., Grangier, P.: Experimental implementation of non-gaussian attacks on a continuous-variable quantum key distribution system. Phys. Rev. Lett. 98, 030503 (2007)

    Article  ADS  Google Scholar 

  19. Yuen, H.P., Kim, A.J.: Classical noise based cryptography similar to two-state quantum cryptography. Phys. Lett. A 241, 135 (1998)

    Article  ADS  Google Scholar 

  20. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  21. Gottesman, D., Lo, H.K., Lutkenhaus, N., Preskill, J.: Security of quantum key distribution with imperfect devices. Quantum Inf. Comput. 4, 325 (2004)

    MathSciNet  MATH  Google Scholar 

  22. Lo, H.K., Ma, Z., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  23. Wang, X.B.: Beating the photon-number-splitting attack in practical quantum cryptography. Phys. Rev. Lett. 91, 230503 (2005)

    Article  Google Scholar 

  24. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  25. Dixon, A., Yuan, Z., Dynes, J., Sharpe, A., Shields, A.: Continuous operation of high bit rate quantum key distribution. Appl. Phys. Lett. 96, 161102 (2010)

    Article  ADS  Google Scholar 

  26. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48, 351 (2001)

    Article  MathSciNet  Google Scholar 

  27. Tomamichel, M., Lin, C., Gisin, N., Renner, R.: Tight finite-key analysis for quantum cryptography. Nat. Commun. 3, 634 (2012). See also arXiv: 1103.4130v2, p. 13 (2012)

  28. Hayashi, M.: Classical and quantum security analysis via smoothing of Renyi entropy of order 2, arXiv:1202.0322 (2012)

  29. Hayashi, M.: Precise evaluation of leaked information with universal privacy amplification in the presence of quantum attacker. arXiv:1202.0601 (2012)

  30. Tomamichel, M., Schaffner, C., Smith, A., Renner, R.: Leftover hashing against quantum side information, arXiv:1002.2436 (2010)

  31. Hwang, W.Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  32. Yuen, H.P.: Fundamental insecurity of multi-photon sources under photon-number spitting attacks in quantum key distribution, arXiv:1207.6985 (2012)

  33. Bouman, N., Fehr, S.: Sampling in a quantum population and application, arXiv:0907.4265v5 (2012)

  34. Lo, H.K., Chow, H.F., Ardehali, M.: Efficient quantum key distribution scheme and proof of unconditional security. J. Cryptol. 18, 133 (2005)

    Article  MATH  Google Scholar 

  35. Yuen, H.P.: On the nature and claims of quantum key distribution, slides on QKD in http://www.tamagawa.jp/research/quantum/openlecture/

Download references

Acknowledgments

The work reported in this article was supported by the Air Force Office of Scientific Research and the Defense Advanced Research Project Agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Horace P. Yuen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuen, H.P. Some physics and system issues in the security analysis of quantum key distribution protocols. Quantum Inf Process 13, 2241–2254 (2014). https://doi.org/10.1007/s11128-014-0756-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-014-0756-4

Keywords

Navigation