Skip to main content
Log in

The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In the paper, we have researched the monogamy relation and the quantum phase transition (QPT) in the anisotropic spin XXZ model by exploiting the quantum renormalization group method. The results show that there exits QPT after several iterations of renormalization in the present system. And we can find out that the monogamy inequality of entanglement of formation (EOF) and entropy quantum discord develop two saturated values which associate with spin-liquid and Néel phases after several iterations of the renormalization. Furthermore, we can also find out that the renormalization of EOF and entropy quantum discord violate the monogamy property while the renormalized geometric quantum discord obeys it no matter whether the QPT iterations are carried out. As a byproduct, the nonanalytic phenomenon and scaling behavior of the spin system are analyzed in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bruß, D.: Entanglement splitting of pure bipartite quantum states. Phys. Rev. A 60, 4344–4348 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  2. Higuchi, A., Sudbery, A.: How entangled can two couples get? Phys. Lett. A 273, 213–217 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  4. Koashi, M., Winter, A.: Monogamy of quantum entanglement and other correlations. Phys. Rev. A 69, 022309 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  5. Giorgi, G.L.: Monogamy properties of quantum and classical correlations. Phys. Rev. A 84, 054301 (2011)

    Article  ADS  Google Scholar 

  6. Fanchini, F.F., Cornelio, M.F., de Oliverira, M.C., Caldeira, A.O.: Conservation law for distributed entanglement of formation and quantum discord. Phys. Rev. A 84, 012313 (2011)

    Article  ADS  Google Scholar 

  7. Prabhu, R., Pati, A.K., De Sen, A., Sen, U.: Conditions for monogamy of quantum correlations: Greenberger-Horne-Zeilinger versus \(W\) states. Phys. Rev. A 85, 040102 (2012)

    Article  ADS  Google Scholar 

  8. Fanchini, F.F., Castelano, L.K., Cornelio, M.F., de Oliverira, M.C.: Locally inaccessible information as a fundamental ingredient to quantum information. New J. Phys. 14, 013027 (2012)

    Article  ADS  Google Scholar 

  9. Streltsov, A., Adesso, G., Piani, M., Bruß, D.: Are general quantum correlations monogamous? Phys. Rev. Lett. 109, 050503 (2012)

    Article  ADS  Google Scholar 

  10. Braga, H.C., Rulli, C.C., de Oliveira, T.R., Sarandy, M.S.: Monogamy of quantum discord by multipartite correlations. Phys. Rev. A 86, 062106 (2012)

    Article  ADS  Google Scholar 

  11. Pawlowski, M.: Security proof for cryptographic protocols based only on the monogamy of Bell’s inequality violations. Phys. Rev. A 82, 032313 (2010)

    Article  ADS  Google Scholar 

  12. Meyer, D.A.: Sophisticated quantum search without entanglement. Phys. Rev. Lett. 85, 2014–2017 (2000)

    Article  ADS  Google Scholar 

  13. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

  14. Kenigsberg, D., Mor, T., Ratsaby, G.: Quantum advantage without entanglement. Quantum Inf. Comput. 6, 606–615 (2006)

    MathSciNet  MATH  Google Scholar 

  15. Niset, J., Cerf, N., Cerf, N.J.: Multipartite nonlocality without entanglement in many dimensions. Phys. Rev. A 74, 052103 (2006)

    Article  ADS  Google Scholar 

  16. Datta, A., Shaji, A., Caves, C.M.: Quantum discord and the power of one qubit. Phys. Rev. Lett. 100, 050502 (2008)

    Article  ADS  Google Scholar 

  17. Luo, S.: Quantum discord for two-qubit systems. Phys. Rev. A 77, 042303 (2008)

    Article  ADS  Google Scholar 

  18. Ali, M., Ran, A.R.P., Alber, G.: Quantum discord for two-qubit \(X\) states. Phys. Rev. A 81, 042105 (2010)

    Article  ADS  Google Scholar 

  19. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit \(X\) states. Phys. Rev. A 84, 042313 (2011)

    Article  ADS  Google Scholar 

  20. Dakić, B., Vedral, V., Brukner, Č.: Necessary and sufficient condition for nonzero quantum discord. Phys. Rev. Lett. 105, 190502 (2010)

    Article  ADS  Google Scholar 

  21. Bellomo, B., Giorgi, G.L., Galve, F., LoFranco, R., Compagno, G., Zambrini, R.: Unified view of correlations using the square-norm distance. Phys. Rev. A 85, 032104 (2012)

    Article  ADS  Google Scholar 

  22. Girolami, D., Adesso, G.: Observable measure of bipartite quantum correlations. Phys. Rev. Lett. 108, 150403 (2012)

    Article  ADS  Google Scholar 

  23. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416, 608–610 (2002). (London)

    Article  ADS  Google Scholar 

  24. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: Quantum phase transitions and bipartite entanglement. Phys. Rev. Lett. 93, 250404 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  25. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66, 032110 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  26. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90, 227902 (2003)

    Article  ADS  Google Scholar 

  27. Amico, L., Fazio, R., Osterloh, A., Vedral, V.: Entanglement in many-body systems. Rev. Mod. Phys. 80, 517–576 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  28. Kargarian, M., Jafari, R., Langari, A.: Renormalization of concurrence: the application of the quantum renormalization group to quantum-information systems. Phys. Rev. A 76, 060304(R) (2007)

    Article  ADS  Google Scholar 

  29. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg ( XXZ) model. Phys. Rev. A 77, 032346 (2008)

    Article  ADS  Google Scholar 

  30. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phase diagram and entanglement of the Ising model with Dzyaloshinskii-Moriya interaction. Phys. Rev. B 78, 214414 (2008)

    Article  ADS  Google Scholar 

  31. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79, 042319 (2009)

    Article  ADS  Google Scholar 

  32. Ma, F.W., Liu, S.X., Kong, X.M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83, 062309 (2011)

    Article  ADS  Google Scholar 

  33. Ma, F.W., Liu, S.X., Kong, X.M.: Quantum entanglement and quantum phase transition in the XY model with staggered Dzyaloshinskii-Moriya interaction. Phys. Rev. A 84, 042302 (2011)

    Article  ADS  Google Scholar 

  34. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78, 224413 (2008)

    Article  ADS  Google Scholar 

  35. Sarandy, M.S.: Classical correlation and quantum discord in critical systems. Phys. Rev. A 80, 022108 (2009)

    Article  ADS  Google Scholar 

  36. Werlang, T., Trippe, C., Ribeiro, G.A.P., Rigolin, G.: Quantum correlations in spin chains at finite temperatures and quantum phase transitions. Phys. Rev. Lett. 105, 095702 (2010)

    Article  ADS  Google Scholar 

  37. Yao, Y., Li, H.W., Zhang, C.M., Yin, Z.Q., Chen, W., Guo, G.C., Han, Z.F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86, 042102 (2012)

    Article  ADS  Google Scholar 

  38. Wootters, W.K.: Entanglement of formation and concurrence. Quantum Inf. Comput. 1, 27–44 (2001)

    MathSciNet  MATH  Google Scholar 

  39. Piani, M.: Problem with geometric discord. Phys. Rev. A 86, 034101 (2012)

    Article  ADS  Google Scholar 

  40. Paula, F.M., de Oliveira, T.R., Sarandy, M.S.: Geometric quantum discord through Schatten 1-norm. (2013) arXiv:1302.7034

  41. Luo, S., Fu, S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grants No. 11074002 and No. 61275119, the Doctoral Foundation of the Ministry of Education of China under Grant No. 20103401110003, the Natural Science Research Project of Education Department of Anhui Province of China under Grant No. KJ2013A205, and also by the Personal Development Foundation of Anhui Province (2008Z018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tao Wu or Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, Xk., Wu, T. & Ye, L. The monogamy relation and quantum phase transition in one-dimensional anisotropic XXZ model. Quantum Inf Process 12, 3305–3317 (2013). https://doi.org/10.1007/s11128-013-0598-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0598-5

Keywords

Navigation