Skip to main content
Log in

Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis’ entropies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Uncertainty relations for more than two observables have found use in quantum information, though commonly known relations pertain to a pair of observables. We present novel uncertainty and certainty relations of state-independent form for the three Pauli observables with use of the Tsallis \(\alpha \)-entropies. For all real \(\alpha \in (0;1]\) and integer \(\alpha \ge 2\), lower bounds on the sum of three \(\alpha \)-entropies are obtained. These bounds are tight in the sense that they are always reached with certain pure states. The necessary and sufficient condition for equality is that the qubit state is an eigenstate of one of the Pauli observables. Using concavity with respect to the parameter \(\alpha \), we derive approximate lower bounds for non-integer \(\alpha \in (1;+\infty )\). In the case of pure states, the developed method also allows to obtain upper bounds on the entropic sum for real \(\alpha \in (0;1]\) and integer \(\alpha \ge 2\). For applied purposes, entropic bounds are often used with averaging over the individual entropies. Combining the obtained bounds leads to a band, in which the rescaled average \(\alpha \)-entropy ranges in the pure-state case. A width of this band is essentially dependent on \(\alpha \). It can be interpreted as an evidence for sensitivity in quantifying the complementarity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Heisenberg, W.: Über den anschaulichen Inhalt der quanten theoretischen Kinematik und Mechanik, Zeitschrift für Physik 43, 172–198 (1927). [Reprinted. In: Wheeler, J.A., Zurek, W.H. (eds.) Quantum Theory and Measurement, pp. 62–84. Princeton University Press, Princeton (1983)]

  2. Hall, M.J.W.: Universal geometric approach to uncertainty, entropy, and information. Phys. Rev. A 59, 2602–2615 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  3. Busch, P., Heinonen, T., Lahti, P.J.: Heisenberg’s uncertainty principle. Phys. Rep. 452, 155–176 (2007)

    Article  ADS  Google Scholar 

  4. Damgård, I., Fehr, S., Renner, R., Salvail, L., Schaffner, C.: A tight high-order entropic quantum uncertainty relation with applications. In: Advances in Cryptology—CRYPTO ’07, Lecture Notes in Computer Science, vol. 4622, pp. 360–378. Springer, Berlin (2007)

  5. Renes, J.M., Boileau, J.-C.: Conjectured strong complementary information tradeoff. Phys. Rev. Lett. 103, 020402 (2009)

    Article  ADS  Google Scholar 

  6. Steeg, G.V., Wehner, S.: Relaxed uncertainty relations and information processing. Quantum Inf. Comput. 9, 0801–0832 (2009)

    Google Scholar 

  7. Wehner, S., Winter, A.: Entropic uncertainty relations—a survey. New J. Phys. 12, 025009 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  8. Bialynicki-Birula, I., Rudnicki, Ł.: Entropic uncertainty relations in quantum physics. In: Sen, K.D. (ed.) Statistical Complexity, pp. 1–34. Springer, Berlin (2011)

    Chapter  Google Scholar 

  9. Robertson, H.P.: The uncertainty principle. Phys. Rev. 34, 163–164 (1929)

    Article  ADS  Google Scholar 

  10. Deutsch, D.: Uncertainty in quantum measurements. Phys. Rev. Lett. 50, 631–633 (1983)

    Article  MathSciNet  ADS  Google Scholar 

  11. Maassen, H., Uffink, J.B.M.: Generalized entropic uncertainty relations. Phys. Rev. Lett. 60, 1103–1106 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  12. Kraus, K.: Complementary observables and uncertainty relations. Phys. Rev. D 35, 3070–3075 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  13. Krishna, M., Parthasarathy, K.R.: An entropic uncertainty principle for quantum measurements. Sankhyā Ser. A 64, 842851 (2002)

    MathSciNet  Google Scholar 

  14. Rastegin, A.E.: Rényi formulation of the entropic uncertainty principle for POVMs. J. Phys. A Math. Theor. 43, 155302 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  15. Ambainis, A.: Limits on entropic uncertainty relations. Quantum Inf. Comput. 10, 0848–0858 (2010)

    MathSciNet  Google Scholar 

  16. Ng, H.Y.N., Berta, M., Wehner, S.: Min-entropy uncertainty relation for finite-size cryptography. Phys. Rev. A 86, 042315 (2012)

    Article  ADS  Google Scholar 

  17. Ivanovic, I.D.: An inequality for the sum of entropies of unbiased quantum measurements. J. Phys. A Math. Gen. 25, L363–L364 (1992)

    Article  ADS  Google Scholar 

  18. Sánchez, J.: Entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 173, 233–239 (1993)

    Article  ADS  Google Scholar 

  19. Sánchez-Ruiz, J.: Improved bounds in the entropic uncertainty and certainty relations for complementary observables. Phys. Lett. A 201, 125–131 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  20. Wu, S., Yu, S., Mølmer, K.: Entropic uncertainty relation for mutually unbiased bases. Phys. Rev. A 79, 022104 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  21. Wehner, S., Winter, A.: Higher entropic uncertainty relations for anti-commuting observables. J. Math. Phys. 49, 062105 (2008)

    Article  MathSciNet  Google Scholar 

  22. Rényi, A.: On measures of entropy and information. In: Neyman, J. (ed.) Proceedings of 4th Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, pp. 547–561. University of California Press, Berkeley (1961)

    Google Scholar 

  23. Tsallis, C.: Possible generalization of Boltzmann–Gibbs statistics. J. Stat. Phys. 52, 479–487 (1988)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bialynicki-Birula, I.: Formulation of the uncertainty relations in terms of the Rényi entropies. Phys. Rev. A 74, 052101 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  25. Rastegin, A.E.: Entropic uncertainty relations for extremal unravelings of super-operators. J. Phys. A Math. Theor. 44, 095303 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  26. Rastegin, A.E.: Entropic formulation of the uncertainty principle for the number and annihilation operators. Phys. Scr. 84, 057001 (2011)

    Article  ADS  Google Scholar 

  27. Berta, M., Christandl, M., Colbeck, R., Renes, J.M., Renner, R.: The uncertainty principle in the presence of quantum memory. Nat. Phys. 6, 659–662 (2010)

    Article  Google Scholar 

  28. Coles, P.J., Yu, L., Zwolak, M.: Relative entropy derivation of the uncertainty principle with quantum side information. arXiv:1105.4865 [quant-ph] (2011)

  29. Hu, M.-L., Fan, H.: Competition between quantum correlations in the quantum-memory-assisted entropic uncertainty relation. Phys. Rev. A 87, 022314 (2013)

    Article  ADS  Google Scholar 

  30. Rastegin, A.E.: Entropic uncertainty relations and quasi-Hermitian operators. J. Phys. A Math. Theor. 45, 444026 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  31. Hu, X., Ye, Z.: Generalised quantum entropies. J. Math. Phys. 47, 023502 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  32. Larsen, U.: Superspace geometry: the exact uncertainty relationship between complementarity aspects. J. Phys. A Math. Gen. 23, 1041–1061 (1990)

    Article  ADS  MATH  Google Scholar 

  33. Diaz, R.G., Romero, J.L., Björk, G., Bourennane, M.: Certainty relations between local and nonlocal observables. New J. Phys. 7, 256 (2005)

    Article  Google Scholar 

  34. Rastegin, A.E.: Number-phase uncertainty relations in terms of generalized entropies. Quantum Inf. Comput. 12, 0743–0762 (2012)

    MathSciNet  Google Scholar 

  35. Rastegin, A.E.: Notes on entropic uncertainty relations beyond the scope of Riesz’s theorem. Int. J. Theor. Phys. 51, 1300–1315 (2011)

    Article  MathSciNet  Google Scholar 

  36. Berta, M., Fawzi, O., Wehner, S.: Quantum to classical randomness extractors. arXiv:1111.2026 [quant-ph] (2011)

  37. Havrda, J., Charvát, F.: Quantification methods of classification processes: concept of structural \(\alpha \)-entropy. Kybernetika 3, 30–35 (1967)

    Google Scholar 

  38. Bengtsson, I., Życzkowski, K.: Geometry of Quantum States: An Introduction to Quantum Entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  39. Fuchs, C.A., Peres, A.: Quantum state disturbance versus information gain: uncertainty relations for quantum information. Phys. Rev. A 53, 2038–2045 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The present author is grateful to anonymous referees for useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexey E. Rastegin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rastegin, A.E. Uncertainty and certainty relations for complementary qubit observables in terms of Tsallis’ entropies. Quantum Inf Process 12, 2947–2963 (2013). https://doi.org/10.1007/s11128-013-0568-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0568-y

Keywords

Navigation