Skip to main content
Log in

Quantum search in structured database using local adiabatic evolution and spectral methods

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Since Grover’s seminal work which provides a way to speed up combinatorial search, quantum search has been studied in great detail. We propose a new method for designing quantum search algorithms for finding a marked element in the state space of a graph. The algorithm is based on a local adiabatic evolution of the Hamiltonian associated with the graph. The main new idea is to apply some techniques such as Krylov subspace projection methods, Lanczos algorithm and spectral distribution methods. Indeed, using these techniques together with the second-order perturbation theory, we give a systematic method for calculating the approximate search time at which the marked state can be reached. That is, for any undirected regular connected graph which is considered as the state space of the database, the introduced algorithm provides a systematic and programmable way for evaluation of the search time, in terms of the corresponding graph polynomials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Grover, L.K.: Quantum mechanics helps in searching for a needle in a haystack. Phys. Rev. Lett. 79, 325 (1997)

    Article  ADS  Google Scholar 

  2. Ambainis, A.: Quantum search algorithms. SIGACT News, 35, 22–35 (2004). Also quant-ph/0504012

    Google Scholar 

  3. Aaronson, S., Ambainis, A.: Quantum search of spatial regions, quant-ph/0303041. In: Proceedings of 44th IEEE Symposium on Foundations of Computer Science, 200, (2003)

  4. Childs, A.M., Goldstone, J.: Spatial search by quantum walk. Phys. Rev. A 70, 022314 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  5. Farhi, E., Gutmann, S.: Analog analogue of a digital quantum computation. Phys. Rev. A 57, 2403 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  6. Farhi E., Goldstone J., Gutmann S., Sipser M.: Quantum computation by adiabatic evolution, quant- ph/0001106.

  7. Childs, A.M., Deotto, E., Farhi, E., Goldstone, J., Gutmann, S., Landahl, A.J.: Quantum search by measurement. Phys. Rev. A 66, 032314 (2002)

    Article  ADS  Google Scholar 

  8. Childs, A., Deotto E., Cleve, R., Farhi, E., Gutmann S., Spielman D.: In: Proceedings of the 35th Annual Symposium on Theory of Computing. ACM Press, 59, (2003)

  9. Roland, J., Cerf, N.J.: Quantum search by local adiabatic evolution. Phys. Rev. A 65, 042308 (2002)

    Article  ADS  Google Scholar 

  10. Rezakhani, A.T., Pimachev, A.K., Lidar, D.A.: Accuracy versus run time in an adiabatic quantum search. Phys. Rev. A 82, 052305 (2010)

    Article  ADS  Google Scholar 

  11. Parlett, B.: The Symmetric Eigenvalue Problem. Prentice-Hall Inc., Englewood Cliffs, NJ (1980)

    MATH  Google Scholar 

  12. Wilkkinson, J.: The Algebraic Eigenvalue Problem. Clarendon Press, Oxford (1965)

    Google Scholar 

  13. Trefethen, L., Bau, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics (SIMA), Philadelphia, PA (1997)

    Book  MATH  Google Scholar 

  14. Cullum, J., Willoughby, R.: L\(\acute{a}\)nczos Algorithems for Large Symmetric Eigenvalue Computations, Vol. I: Theory. Birkh\(\ddot{a}\)user Boston Inc., Boston, MA (1985)

  15. Jafarizadeh, M.A., Sufiani, R., Salimi, S., Jafarizadeh, S.: Investigation of continuous-time quantum walk by using Krylov subspace-Lanczos algorithm. Eur. Phys. J. B 59, 199–216 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Shohat, J.A., Tamarkin, J.D.: The Problem of Moments. American Mathematical Society, Providence, RI (1943)

    MATH  Google Scholar 

  17. Hislop, P.D., Sigal, I.M.: Introduction to spectral theory: with applications to schrodinger operators (1995)

  18. Chihara, T.S.: An Introduction to Orthogonal Polynomials. Gordon and Breach Science Publishers Inc., London (1978)

    MATH  Google Scholar 

  19. Alipour, Z., Jafarizadeh, M.A., Fooladi, N., Sufiani, R: Int. J. Modern Phys. E 1465–1476 (2011)

  20. Schiff, L.I.: Quantum Mechanics. McGraw-Hill, Singapore (1955)

    MATH  Google Scholar 

  21. Bransden, B.H., Joachain, C.J.: Quantum Mechanics. Pearson, Education, London (2000)

    Google Scholar 

  22. Jafarizadeh, M.A., Salimi, S.: Investigation of continuous-time quantum walk via spectral distribution associated with adjacency matrix. Ann. Phys. 322, 1005–1033 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  23. Jafarizadeh, M., Salimi, S.: Investigation of continuous-time quantum walk via modules of Bose–Mesner and Terwilliger algebras. J. Phys. A: Math. Gen. 39, 13295–13323 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Bailey, R.A.: Association Schemes: Designed Experiments, Algebra and Combinatorics. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  25. Jafarizadeh, M.A., Sufiani, R., Taghavi, S.F., Barati, E.: J. Stat. Mech. 04004, (2009)

  26. Gordon James and Martin Liebeck: Representations and characters of groups. Cambridge University Press, Cambridge (1993)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Sufiani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sufiani, R., Bahari, N. Quantum search in structured database using local adiabatic evolution and spectral methods. Quantum Inf Process 12, 2813–2831 (2013). https://doi.org/10.1007/s11128-013-0563-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-013-0563-3

Keywords

Navigation