Skip to main content
Log in

Control and manipulation of entanglement between two coupled qubits by fast pulses

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We have investigated the analytical and numerical dynamics of entanglement for two qubits that interact with each other via Heisenberg XXX-type interaction and subject to local time-specific external kick and Gaussian pulse-type magnetic fields in \(x\)\(y\) plane. The qubits have been assumed to be initially prepared in different pure separable and maximally entangled states and the effect of the strength and the direction of external fast pulses on concurrence has been investigated. The carefully designed kick or pulse sequences are found to enable one to obtain constant long-lasting entanglement with desired magnitude. Moreover, the time ordering effects are found to be important in the creation and manipulation of entanglement by external fields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Nielson, M., Chuang, I.: Quantum Computation and Quantum Communication. Cambridge University Press, England (2000)

    Google Scholar 

  2. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bells theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Gruska, J.: Quantum Computing. McGraw-Hill, New York (1999)

  5. Loss, D., Di-Vicenzo, D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  6. Kane, B.: A silicon-based nuclear spin quantum computer. Nature (London) 393, 133 (1998)

    Article  ADS  Google Scholar 

  7. Vrijen, R., et al.: Electron-spin-resonance transistors for quantum computing in silicon-germanium heterostructures. Phys. Rev. A 62, 012306 (2000)

    Article  ADS  Google Scholar 

  8. Sorensen, A., et al.: Many-particle entanglement with Bose-Einstein condensates. Nature (London) 409, 63 (2001)

    Article  ADS  Google Scholar 

  9. Wu, L.A., Lidar, D.A., Friesen, M.: One-spin quantum logic gates from exchange interactions and a global magnetic field. Phys. Rev. Lett. 93, 030501 (2004)

    Article  ADS  Google Scholar 

  10. Imamoglu, A., et al.: Quantum information processing using quantum dot spins and cavity QED. Phys. Rev. Lett. 83, 4204 (1999)

    Article  ADS  Google Scholar 

  11. Malinovsky, V.S., Sola, I.R.: Quantum phase control of entanglement. Phys. Rev. Lett. 93, 190502 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  12. Sadiek, G., Lashin, E.I., Abdalla, M.S.: Entanglement of a two-qubit system with anisotropic XYZ exchange coupling in a nonuniform time-dependent external magnetic field. Physica B 404, 1719 (2009)

    Article  ADS  Google Scholar 

  13. Wang, X., Bayat, A., Schirmer, S.G., Bose, S.: Robust entanglement in antiferromagnetic Heisenberg chains by single-spin optimal control. Phys. Rev. A 81, 032312 (2010)

    Article  ADS  Google Scholar 

  14. Abliz, A., Gao, J.H., Xie, X.C., Wu, Y.S., Liu, W.M.: Entanglement control in an anisotropic two-qubit Heisenberg XYZ model with external magnetic fields. Phys. Rev. A 74, 052105 (2006)

    Article  ADS  Google Scholar 

  15. Wang, X.: Entanglement in the quantum Heisenberg XY model. Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  16. Sainz, I., Burlak, G., Klimov, A.B.: Transient entanglement in a spin chain stimulated by phase pulses. ArXiv:quant-ph/1008.2784 (2010)

  17. Huang, Z., Kais, S.: Dynamics of entanglement for one-dimensional spin systems in an external time-dependent magnetic field. Int. J. Quantum Inf. 3, 483 (2005)

    Article  MATH  Google Scholar 

  18. Huang, Z., Kais, S.: Entanglement evolution of one-dimensional spin systems in external magnetic fields. Phys. Rev. A 73, 022339 (2006)

    Article  ADS  Google Scholar 

  19. Blaauboer, M., Di-Vincenzo, D.P.: Detecting entanglement using a double-quantum-dot turnstile. Phys. Rev. Lett. 95, 160402 (2005)

    Article  ADS  Google Scholar 

  20. Altintas, F., Eryigit, R.: Entanglement dynamics of two qubits under the influence of external kicks and Gaussian pulses. J. Phys. A Math. Theor. 44, 405302 (2011)

    Article  MathSciNet  Google Scholar 

  21. Alkurtas, B., Sadiek, G., Kais, S.: Entanglement dynamics of one-dimensional driven spin systems in time-varying magnetic fields. Phys. Rev. A 84, 022314 (2011)

    Article  ADS  Google Scholar 

  22. Kaplan, L., Shakov, K.K., Chalastaras, A., Maggio, M., Burin, A.L., McGuire, J.H.: Time ordering in kicked qubits. Phys. Rev. A 70, 063401 (2004)

    Article  ADS  Google Scholar 

  23. Shakov, K.K., McGuire, J.H., Kaplan, L., Uskov, D., Chalastaras, A.: Sudden switching in two-state systems. J. Phys. B At. Mol. Opt. Phys. 39, 1361 (2006)

    Article  ADS  Google Scholar 

  24. Wei, L.F., Johansson, J.R., Cen, L.X., Ashhab, S., Nori, F.: Controllable coherent population transfers in superconducting qubits for quantum computing. Phys. Rev. Lett. 100, 113601 (2008)

    Google Scholar 

  25. Wang, Y., Cao, J., Wang, Y.: Tunable entanglement of two-qubit XY model with in-plane magnetic fields. Phys. Lett. A 342, 375 (2005)

    Article  ADS  MATH  Google Scholar 

  26. Leandro, J.F., de-Castro, A.S.M., Munhoz, P.P., Semiao, F.L.: Active control of qubit-qubit entanglement evolution. Phys. Lett. A 374, 4199 (2010)

    Google Scholar 

  27. Godunov, A.L., McGuire, J.H.: Independent time approximation for dynamically interacting multi-electron systems. J. Phys. B At. Mol. Opt. Phys. 34, L223 (2001)

    Article  ADS  Google Scholar 

  28. Wootters, W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  29. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A Math. Gen. 34, 6899 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Jones, J.A., Hansen, R.H., Mosca, M.: Quantum logic gates and nuclear magnetic resonance pulse sequences. J. Magn. Reson. 135, 353 (1998)

    Google Scholar 

  31. Vandersypen, L.M.K., et al.: Experimental realization of Shor’s quantum factoring algorithm using nuclear magnetic resonance. Nature 414, 883 (2001)

    Article  ADS  Google Scholar 

  32. Slichter, C.P.: Principles of Magnetic Resonance. Springer, Berlin (1996)

    Google Scholar 

  33. Kosloff, R., Hammerich, A.D., Tannor, D.: Excitation without demolition: radiative excitation of ground-surface vibration by impulsive stimulated Raman scattering with damage control. Phys. Rev. Lett. 69, 2172 (1992)

    Article  ADS  Google Scholar 

  34. Shi, S., Woody, A., Rabitz, H.: Optimal control of selective vibrational excitation in harmonic linear chain molecules. J. Chem. Phys. 88, 6870 (1988)

    Article  ADS  Google Scholar 

  35. Palao, J., Kosloff, R.: Quantum computing by an optimal control algorithm for unitary transformations. Phys. Rev. Lett. 89, 188301 (2002)

    Article  ADS  Google Scholar 

  36. Ollivier, H., Zurek, W.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ferdi Altintas.

Appendices

Appendix A: Single positive kick

Here, we consider two qubits whose states are strongly perturbed by external fields which may be expressed as a sudden kick at \(t=T\). The time dependent magnetic fields on qubits \(1\) and \(2\) may be expressed as \(B_1(t)=\alpha \delta (t-T)\) and \(B_2(t)=\beta \delta (t-T)\), respectively, where \(\alpha \) and \(\beta \) are called integrated magnetic strengths. For such a kick the integration over the time is trivial and the time evolution matrix in Eq. (5) becomes as [20, 23]:

$$\begin{aligned} \hat{U}^K(t)=e^{-i\hat{H}_0(t-T)}e^{-i\int \limits _{T-\epsilon }^{T+\epsilon }\hat{H}_{int}(t^{\prime })dt^{\prime }}e^{-i\hat{H}_0 T}, \end{aligned}$$
(12)

with matrix elements

$$\begin{aligned} U_{11}&= e^{-iJt}\cos \left(\frac{\alpha }{2}\right)\cos \left(\frac{\beta }{2}\right)=U_{44},\nonumber \\ U_{22}&= \frac{1}{2}e^{-iJt}\left(e^{4iJt}\cos \left(\frac{\varDelta }{2}\right)+\cos \left(\frac{\varOmega }{2}\right)\right)=U_{33},\nonumber \\ U_{23}&= -\frac{1}{2}e^{-iJt}\left(e^{4iJt}\cos \left(\frac{\varDelta }{2}\right)-\cos \left(\frac{\varOmega }{2}\right)\right)=U_{32},\nonumber \\ U_{12}&= \frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{4iJT}\sin \left(\frac{\varDelta }{2}\right)-\sin \left(\frac{\varOmega }{2}\right)\right)=e^{-2i\theta }U_{43},\nonumber \\ U_{13}&= -\frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{4iJT}\sin \left(\frac{\varDelta }{2}\right)+\sin \left(\frac{\varOmega }{2}\right)\right)=e^{-2i\theta }U_{42},\nonumber \\ U_{14}&= -e^{-iJt}e^{-2i\theta }\sin \left(\frac{\alpha }{2}\right)\sin \left(\frac{\beta }{2}\right)=e^{-4i\theta }U_{41},\nonumber \\ U_{21}&= -e^{iJ(t-2T)}e^{i\theta }\left(\cos \left(\frac{\beta }{2}\right)\sin \left(\frac{\alpha }{2}\right)\sin (\xi )+i\cos \left(\frac{\alpha }{2}\right)\sin \left(\frac{\beta }{2}\right)\cos (\xi )\right)\nonumber \\&= e^{2i\theta }U_{34},\nonumber \\ U_{24}&= -\frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{2i\xi }\sin \left(\frac{\varDelta }{2}\right)+\sin \left(\frac{\varOmega }{2}\right)\right)=e^{-2i\theta }U_{31}, \end{aligned}$$
(13)

where \(\varDelta =(\alpha -\beta ), \varOmega =(\alpha +\beta )\) and \(\xi =2J(t-T)\). It should be noted that the propagator given by Eq. () is valid only at times \(t>T\).

Appendix B: Two positive kicks

The next example is the positive-positive kick sequence applied at times \(t=T_1\) and \(t=T_2\), namely, \(B_1(t)=\alpha (\delta (t-T_1)+\delta (t-T_2))\) and \(B_2(t)=\beta (\delta (t-T_1)+\delta (t-T_2))\). Following the procedure given in Eq. (), one obtains the time evolution matrix at times \(t > T_2\) as [20, 23]:

$$\begin{aligned} \hat{U}^{K}(t)=e^{-i\hat{H}_0(t-T_2)}e^{-i\int \limits _{T_2-\epsilon }^{T_2+\epsilon }\hat{H}_{int}(t^{\prime })dt^{\prime }}e^{-i\hat{H}_0(T_2-T_1)}e^{-i\int \limits _{T_1-\epsilon }^{T_1+\epsilon }\hat{H}_{int}(t^{\prime })dt^{\prime }}e^{-i\hat{H}_0T_1},\nonumber \\ \end{aligned}$$
(14)

with matrix elements

$$\begin{aligned} U_{11}&= \frac{1}{4}e^{-iJt}\left(1+e^{4iJT}\left(\cos (\varDelta )-1\right)+\cos (\varDelta )+2\cos (\varOmega )\right)=U_{44},\nonumber \\ U_{22}&= \frac{1}{4}e^{-iJt}\left(e^{4iJt}+e^{4iJ(t-T)}\left(\cos (\varDelta )-1\right)+e^{4iJt}\cos (\varDelta )+2\cos (\varOmega )\right)=U_{33},\nonumber \\ U_{23}&= -\frac{1}{4}e^{-iJt}\left(e^{4iJt}+e^{4iJ(t-T)}\left(\cos (\varDelta )-1\right)+e^{4iJt}\cos (\varDelta )-2\cos (\varOmega )\right)=U_{32},\nonumber \\ U_{12}&= \frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{6iJT}\cos (2JT)\sin (\varDelta )-\sin (\varOmega )\right)=e^{-2i\theta }U_{43},\nonumber \\ U_{13}&= -\frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{6iJT}\cos (2JT)\sin (\varDelta )+\sin (\varOmega )\right)=e^{-2i\theta }U_{42},\nonumber \\ U_{14}&= \frac{1}{4}e^{-iJt}e^{-2i\theta }\left(e^{4iJT}-1-\left(1+e^{4iJT}\right)\cos (\varDelta )+2\cos (\varOmega )\right)=e^{-4i\theta }U_{41},\nonumber \\ U_{21}&= \frac{1}{4}ie^{-iJt}e^{i\theta }\left(e^{4iJ(t-2T)}\left(1+e^{4iJT}\right)\sin (\varDelta )-2\sin (\varOmega )\right)=e^{2i\theta }U_{34},\nonumber \\ U_{24}&= -\frac{1}{4}ie^{-iJt}e^{-i\theta }\left(e^{4iJ(t-2T)}\left(1+e^{4iJT}\right)\sin (\varDelta )+2\sin (\varOmega )\right)=e^{-2i\theta }U_{31}, \end{aligned}$$
(15)

where \(\varDelta =(\alpha -\beta )\) and \(\varOmega =(\alpha +\beta )\). Here, we have assumed equally distanced kicks applied at times \(T_1=T\) and \(T_2=2T\).

Appendix C: Three positive kicks

The final example is the sequence of three positive kicks applied at times \(t=T_1, t=T_2\), and \(t=T_3\) namely, \(B_1(t)=\sum _{i=1}^3\alpha \delta (t-T_i)\) and \(B_2(t)=\sum _{i=1}^3\beta \delta (t-T_i)\). Following the procedure given in Eq. (), one can obtain the time evolution matrix at times \(t > T_3\) as [20]:

$$\begin{aligned} \hat{U}^{K}(t)&= e^{-i\hat{H}_0(t-T_3)}e^{-i\int \limits _{T_3-\epsilon }^{T_3+\epsilon }\hat{H}_{int}(t^{\prime })dt^{\prime }}e^{-i\hat{H}_0(T_3-T_2)}e^{-i\int \limits _{T_2-\epsilon }^{T_2+\epsilon }\hat{H}_{int}(t^{\prime })dt^{\prime }}\nonumber \\&\times e^{-i\hat{H}_0(T_2-T_1)}e^{-i\int \limits _{T_1-\epsilon }^{T_1+\epsilon }\hat{H}_{int}(t^{\prime })dt^{\prime }}e^{-i\hat{H}_0T_1}, \end{aligned}$$
(16)

with matrix elements for \(T_1=T, T_2=2T\) and \(T_3=3T\),

$$\begin{aligned} U_{11}&= \frac{1}{8}e^{-iJt}\left(\left(3-2e^{4iJT}-e^{8iJT}\right)\cos \left(\frac{\varDelta }{2}\right)+\left(1+e^{4iJT}\right)^2\cos \left(\frac{3\varDelta }{2}\right)+4\cos \left(\frac{3\varOmega }{2}\right)\right)\nonumber \\&= U_{44},\nonumber \\ U_{22}&= \frac{1}{2}e^{-iJt}\left(\cos \left(\frac{3\varOmega }{2}\right)+e^{4iJ(t-T)}\cos \left(\frac{\varDelta }{2}\right)((1+\cos (4JT))\cos (\varDelta )+i\sin (4JT)-1)\right)\nonumber \\&= U_{33},\nonumber \\ U_{23}&= \frac{1}{2}e^{-iJt}\left(\cos \left(\frac{3\varOmega }{2}\right)-e^{4iJ(t-T)}\cos \left(\frac{\varDelta }{2}\right)((1+\cos (4JT))\cos (\varDelta )+i\sin (4JT)-1)\right)\nonumber \\&= U_{32},\nonumber \\ U_{12}&= \frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{8iJT}(\cos (4JT)+2\cos (2JT)^2\cos (\varDelta ))\sin \left(\frac{\varDelta }{2}\right)-\sin \left(\frac{3\varOmega }{2}\right)\right)\nonumber \\&= e^{-2i\theta }U_{43},\nonumber \\ U_{13}&= -\frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{8iJT}(\cos (4JT)+2\cos (2JT)^2\cos (\varDelta ))\sin \left(\frac{\varDelta }{2}\right)+\sin \left(\frac{3\varOmega }{2}\right)\right)\nonumber \\&= e^{-2i\theta }U_{42},\nonumber \\ U_{14}&= \frac{1}{8}e^{-iJt}e^{-2i\theta }\left(\left(2e^{4iJT}+e^{8iJT}-3\right)\cos \left(\frac{\varDelta }{2}\right)-\left(1+e^{4iJT}\right)^2\cos \left(\frac{3\varDelta }{2}\right)+4\cos \left(\frac{3\varOmega }{2}\right)\right)\nonumber \\&= e^{-4i\theta }U_{41},\nonumber \\ U_{21}&= \frac{1}{2}ie^{-iJt}e^{i\theta }\left(e^{4iJ(t-2T)}(\cos (4JT)+2\cos (2JT)^2\cos (\varDelta ))\sin \left(\frac{\varDelta }{2}\right)-\sin \left(\frac{3\varOmega }{2}\right)\right)\nonumber \\&= e^{2i\theta }U_{34},\nonumber \\ U_{24}&= -\frac{1}{2}ie^{-iJt}e^{-i\theta }\left(e^{4iJ(t-2T)}(\cos (4JT)+2\cos (2JT)^2\cos (\varDelta ))\sin \left(\frac{\varDelta }{2}\right)+\sin \left(\frac{3\varOmega }{2}\right)\right)\nonumber \\&= e^{-2i\theta }U_{31}, \end{aligned}$$
(17)

where \(\varDelta =(\alpha -\beta )\) and \(\varOmega =(\alpha +\beta )\).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Altintas, F., Eryigit, R. Control and manipulation of entanglement between two coupled qubits by fast pulses. Quantum Inf Process 12, 2251–2268 (2013). https://doi.org/10.1007/s11128-012-0522-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0522-4

Keywords

Navigation