Skip to main content
Log in

On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski-Moriya interaction in magnetic field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We calculate Berry phases and entanglement of adiabatic states for a two spin-1/2 system described by the Heisenberg model with Dzyaloshinski-Moriya (DM) interaction; one of the spins is driven by a time-varing rotating magnetic field and the other is coupled with a static magnetic field. This static magnetic field can be used for controlling as well as vanishing the Berry phases and entanglement of the system state. Besides, we show that the Berry phase and entanglement are not always exact but useful to detect energy levels approach. Additionally, we find that a nontrivial two-spin unitary transformation, purely based on Berry phases, can be obtained by using two consecutive cycles with the opposite direction of the static magnetic field, opposite signs of the exchange constant as well as DM interaction, and a phase shift of the rotating magnetic field. This unitary transformation presents a two-qubit geometric phase gate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

  2. Aharonov Y., Anandan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58, 1593–1596 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  3. Samuel J., Bhandari B.: General setting for Berry’s phase. Phys. Rev. Lett. 60, 2339–2342 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  4. Wilczek F., Zee A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52, 2111–2114 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  5. Uhlmann A.: Parallel transport and quantum holonomy along density operators. Rep. Math. Phys. 24, 229–240 (1986)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  6. Uhlmann A.: A gauge field governing parallel transport along mixed states. Lett. Math. Phys. 21, 229–236 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Sjöqvist E., Pati A.K., Ekert A., Anandan A., Ericsson E., Oi D.K.L., Vedral V.: Geometric phases for mixed states in interferometry. Phys. Rev. Lett. 85, 2845–2849 (2000)

    Article  ADS  Google Scholar 

  8. Layton E., Huang Y.H., Chu S.I.: Cyclic quantum evolution and Aharonov-Anandan geometric phases in SU(2) spin-coherent states. Phys. Rev. A 41, 42–48 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  9. Lai Y.Z., Liang J.Q., Muller-Kirsten H.J.W., Zhou J.G.: Time-dependent quantum systems and the invariant Hermitian operator. Phys. Rev. A 53, 3691–3693 (1996)

    Article  ADS  Google Scholar 

  10. Yan F.L., Yang L.J., Li B.Z.: Invariant Hermitian operator and geometric phase for the Heisenberg spin system in a time-dependent magnetic field. Phys. Lett. A 259, 207–211 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  11. Yang L.G., Yan F.L.: The area theorem of the Berry phase for the time-dependent externally driven system. Phys. Lett. A 265, 326–330 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Yang L.G., Yan F.L.: Berry phase for many-spin system with the uniaxial anisotropic exchange interaction in a time-dependent magnetic field. Phys. Lett. A 298, 73–77 (2002)

    Article  ADS  MATH  Google Scholar 

  13. Zhu S.L., Wang Z.D., Zhang Y.D.: Nonadiabatic noncyclic geometric phase of a spin-1/2 particle subject to an arbitrary magnetic field. Phys. Rev. B 611, 1142–1148 (2000)

    Article  ADS  Google Scholar 

  14. Sjöqvist E.: Geometric phase for entangled spin pairs. Phys. Rev. A 62, 022109 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  15. Tong D.M., Sjöqvist E., Kwek L.C., Oh C.H., Ericsson M.: Relation between geometric phases of entangled bipartite systems and their subsystems. Phys. Rev. A 68, 022106 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  16. Ge X.Y., Wadati M.: Geometric phase of entangled spin pairs in a magnetic field. Phys. Rev. A 72, 052101 (2005)

    Article  ADS  Google Scholar 

  17. Yi X.X., Wang L.C., Zheng T.Y.: Berry phase in a composite system. Phys. Rev. Lett. 92, 150406 (2004)

    Article  MathSciNet  ADS  Google Scholar 

  18. Sun H.Y., Wang L.C., Yi X.X.: Berry phase in a bipartite system with general subsystem-subsystem couplings. Phys. Lett. A 370, 119–122 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Li X.: Interacting spin pairs in rotational magnetic fields and geometric phase. Phys. Lett. A 372, 4980–4984 (2008)

    Article  ADS  MATH  Google Scholar 

  20. Oh S.: Geometric phases and entanglement of two qubits with XY type interaction. Phys. Lett. A 373, 644–647 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  21. Jones J.A., Verdral V., Ekert A., Castagnoli G.: Geometric quantum computation using nuclear magnetic resonance. Nature(London) 403, 869–871 (1999)

    Article  ADS  Google Scholar 

  22. Duan L.M., Cirac J.I., Zoller P.: Geometric manipulation of trapped ions for quantum computation. Science 292, 1695–1697 (2001)

    Article  ADS  Google Scholar 

  23. Zhu S.L., Wang Z.D.: Unconventional geometric quantum computation. Phys. Rev. Lett. 91, 187902 (2003)

    Article  ADS  Google Scholar 

  24. Shao L.B., Wang Z.D., Xing D.Y.: Implementation of quantum gates based on geometric phases accumulated in the eigenstates of periodic invariant operators. Phys. Rev. A 75, 014301 (2007)

    Article  ADS  Google Scholar 

  25. Wang Z.S., Wu C.F., Feng X.L., Kwek L.C., Lai C.H., Oh C.H., Vedral V.: Nonadiabatic geometric quantum computation. Phys. Rev. A 76, 044303 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  26. Sjöqvist E.: A new phase in quantum computation. Physics 1, 35 (2008)

    Article  Google Scholar 

  27. Macchiavello C., Palma G.M., Zeilinger A.: Quantum Computation and Quantum Information Theory. World Scientific, Singapore (2000)

    Google Scholar 

  28. Zhou Y., Zhang G.F.: Geometric phase of a bipartite system with DzyaloshinskiGMoriya interaction. Opt. Commun. 281, 5278–5281 (2008)

    Article  ADS  Google Scholar 

  29. Zheng S.B., Guo G.C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  30. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Communication. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  31. Bouwmeester D., Pan J.W.: Experimental quantum teleportation. Nature(London) 390, 575–579 (1997)

    Article  ADS  Google Scholar 

  32. Deutsch D., Jozsa R.: Rapid solution of problems by quantum computation. Proc. R. Soc. London A 439, 553–558 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  33. Loss D., DiVincenzo D.P.: Quantum computation with quantum dots. Phys. Rev. A 57, 120–126 (1998)

    Article  ADS  Google Scholar 

  34. DiVincenzo D.P.: Two-bit gates are universal for quantum computation. Phys. Rev. A 51, 1015–1022 (1995)

    Article  ADS  Google Scholar 

  35. Coish, W.A., Loss, D., http://arxiv.org/abs/cond-mat/0606550; Burkard, G., Loss, D., DiVincenzo, D.P.: Coupled quantum dots as quantum gates. Phys. Rev. B 59, 2070–2078 (1999)

  36. Kheirandish F. et al.: Effect of spin-orbit interaction on entanglement of two-qubit Heisenberg XYZ systems in an inhomogeneous magnetic field. Phys. Rev. A 77, 042309 (2008)

    Article  ADS  Google Scholar 

  37. DiVincenzo D.P., Bacon D., Kempe J., Burkard G., Whaley K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2000)

    Article  ADS  Google Scholar 

  38. Bennett C.H., DiVincenzo D.P., Smolin J., Wootters W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A 54, 3824–3851 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  39. Dzyaloshinskii I.: A thermodynamic theory of weak ferromagnetism of antiferromagnetics. J. Phys. Chem. Solid 4, 241–255 (1958)

    Article  ADS  Google Scholar 

  40. Moriya T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228–230 (1960)

    Article  ADS  Google Scholar 

  41. Zhu S.-L.: Scaling of geometric phases close to the quantum phase transition in the XY spin chain. Phys. Rev. Lett. 96, 077206 (2006)

    Article  ADS  Google Scholar 

  42. Oh S., Huang Z., Peskin U., Kais S.: Entanglement, Berry phases, and level crossings for the atomic Breit-Rabi Hamiltonian. Phys. Rev. A 78, 062106 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  43. Ekert A., Ericsson M., Hayden P., Inamori H., Jones J.A., Oi D.K.L., Vedral L.: Geometric quantum computation. J. Mod. Opt. 47, 2501–2513 (2000)

    MathSciNet  ADS  MATH  Google Scholar 

  44. Shi Y.: Geometric vs. dynamical gates in quantum computing implementations using Zeeman and Heisenberg Hamiltonians. Europhys. Lett. 83, 50002 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Amniat-Talab.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Amniat-Talab, M., Rangani Jahromi, H. On the entanglement and engineering phase gates without dynamical phases for a two-qubit system with Dzyaloshinski-Moriya interaction in magnetic field. Quantum Inf Process 12, 1185–1199 (2013). https://doi.org/10.1007/s11128-012-0463-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0463-y

Keywords

Navigation