Skip to main content
Log in

How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Projective measurements of a single two-level quantum mechanical system (a qubit) evolving under a time-independent Hamiltonian produce a probability distribution that is periodic in the evolution time. The period of this distribution is an important parameter in the Hamiltonian. Here, we explore how to design experiments so as to minimize error in the estimation of this parameter. While it has been shown that useful results may be obtained by minimizing the risk incurred by each experiment, such an approach is computationally intractable in general. Here, we motivate and derive heuristic strategies for experiment design that enjoy the same exponential scaling as fully optimized strategies. We then discuss generalizations to the case of finite relaxation times, T 2 < ∞.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Barna J.C.J., Laue E.D., Mayger M.R., Skilling J., Worrall S.J.P.: Exponential sampling, an alternative method for sampling in two-dimensional NMR experiments. J. Magn. Reson. (1969) 73(1), 69–77 (1987). doi:10.1016/0022-2364(87)90225-3

    Article  Google Scholar 

  2. Childs, A.M., Preskill, J., Renes, J.: Quantum information and precision measurement. J. Mod. Opt. 47(2):155–176 arxivref: quant-ph/9904021 (2000)

    Google Scholar 

  3. Chylla, R.A., Markley, J.L.: Theory and application of the maximum likelihood principle to NMR parameter estimation of multidimensional NMR data. J. Biomol. NMR 5. doi:10.1007/BF00211752 (1995)

  4. Cover T.M., Thomas J.A.: Elements of Information Theory. 2nd edn. Wiley-Interscience, New York (2006)

    MATH  Google Scholar 

  5. Ferrie, C., Granade, C.E., Cory, D.G.: Adaptive Hamiltonian estimation using Bayesian experimental design. (To appear) In: Bayesian Inference And Maximum Entropy Methods In Science And Engineering: Proceedings of the 31th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering, arxivref:1107.4333 (2011)

  6. Gill, R.D., Levit, B.Y.: Applications of the van Trees inequality: a Bayesian Cramér–Rao bound. Bernoulli, 1(1/2) (1995) http://projecteuclid.org/euclid.bj/1186078362

  7. Hoadley, B.: Asymptotic properties of maximum likelihood estimators for the independent not identically distributed case. Ann. Math. Stat.42(6) (1971) http://www.jstor.org/stable/2240126

  8. Hyberts, S.G., Arthanari, H., Wagner, G.: Applications of non-uniform sampling and processing. Top. Curr. Chem. (2011). PMID: 21796515. doi:10.1007/128_2011_187.

  9. Lehmann E.L., George C.: Theory of Point Estimation. 2nd edn. Springer, New York (1998)

    MATH  Google Scholar 

  10. Maciejewski M.W., Qui H.Z., Iulian R., Mehdi M., Hoch J.C.: Nonuniform sampling and spectral aliasing. J. Magn. Reson. 199(1), 88–93 (2009). doi:10.1016/j.jmr.2009.04.006

    Article  ADS  Google Scholar 

  11. Sergeevich A., Chandran A., Combes J., Bartlett S.D., Wiseman H.M.: Characterization of a qubit Hamiltonian using adaptive measurements in a fixed basis. Phys. Rev. A 84, 052315 (2011). doi:10.1103/PhysRevA.84.052315

    Article  ADS  Google Scholar 

  12. Weng R.C.: A Bayesian Edgeworth expansion by Stein’s Identity. Bayesian Anal. 5, 741–764 (2010). doi:10.1214/10-BA526

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher E. Granade.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ferrie, C., Granade, C.E. & Cory, D.G. How to best sample a periodic probability distribution, or on the accuracy of Hamiltonian finding strategies. Quantum Inf Process 12, 611–623 (2013). https://doi.org/10.1007/s11128-012-0407-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0407-6

Keywords

Navigation