Skip to main content
Log in

One-qubit quantum gates associated with topological defects in solids

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We show a new proposal for implementing one-qubit quantum gates in a solid associated with the presence of topological defects. We discuss a new way of obtaining quantum holonomies for a spin-half particle, and the implementation of a set of one-qubit quantum gates based on the topological phases provided by the presence of a defect in a crystalline solid.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiVincenzo D.P.: Quantum computation. Science 270, 255–261 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  2. Steane A.: Quantum computing. Rep. Prog. Phys. 61, 117–173 (1998)

    Article  MathSciNet  ADS  Google Scholar 

  3. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  4. Bohm A., Mostafazadeh A., Koizumi H., Niu Q., Zwanziger J.: The geometric phase in quantum systems: foundations, mathematical concepts and applications in molecular and condensed matter physics. Springer, New York (2003)

    MATH  Google Scholar 

  5. Wilczek F., Zee A.: Appearence of gauge structure in simple dynamical system. Phys. Rev. Lett. 52, 2111–2114 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  6. Ekert A., Ericsson M., Hayden P., Inamory H., Jones J.A., Oi D.K.L., Vedral V.: Geometric quantum computation. J. Mod. Opt. 47, 2501–2513 (2000)

    ADS  MATH  Google Scholar 

  7. Vedral V.: Geometric phases and topological quantum computation. Int. J. Quant. Inf. 1, 1–23 (2003)

    Article  MATH  Google Scholar 

  8. Pachos J., Zanardi P., Rasetti M.: Non-Abelian Berry connections for quantum computation. Phys. Rev. A 61, 010305R (2000)

    Article  MathSciNet  ADS  Google Scholar 

  9. Pachos J., Zanardi P.: Quantum holonomies for quantum computing. Int. J. Mod. Phys. B 15, 1257–1285 (2001)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Margolin A.E., Strazhev V.I., Tregubovich A.Y.: Geometric phases and quantum computations. Phys. Lett. A 303, 131–134 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Zhu S.-L., Wang Z.D.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89, 097902 (2002)

    Article  ADS  Google Scholar 

  12. Sjöqvist E.: A new phase in quantum computation. Physics 1, 35 (2008)

    Article  Google Scholar 

  13. Kuvshinov V.I., Kuzmin A.V.: Stability of holonomic quantum computations. Phys. Lett. A 316, 391–394 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Zanardi P., Rasetti M.: Holonomic quantum computation. Phys. Lett. A 264, 94–99 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  15. Pachos J., Chountasis S.: Optical holonomic quantum computer. Phys. Rev. A 62, 052318 (2000)

    Article  ADS  Google Scholar 

  16. Pachos J.: Topological features in ion-trap holonomic computation. Phys. Rev. A 66, 042318 (2002)

    Article  ADS  Google Scholar 

  17. Recati A., Calarco T., Zanardi P., Cirac J.I., Zoller P.: Holonomic quantum computation with neutral atoms. Phys. Rev. A 66, 032309 (2002)

    Article  ADS  Google Scholar 

  18. Cholascinski M.: Quantum holonomies with Josephson-junction devices. Phys. Rev. B 69, 134516 (2004)

    Article  ADS  Google Scholar 

  19. Zhang P., Wang Z.D., Sun J.D., Sun C.P.: Holonomic quantum computation using rf superconducting quantum interference devices coupled through a microwave cavity. Phys. Rev. A 71, 042301 (2005)

    Article  ADS  Google Scholar 

  20. Feng Z.-B., Zhang X.-D.: Holonomic quantum computation with superconducting charge-phase qubits in a cavity. Phys. Lett. A 372, 1589–1594 (2008)

    Article  ADS  MATH  Google Scholar 

  21. Lloyd S.: Almost any quantum logic gate is universal. Phys. Rev. Lett. 75, 346–349 (1995)

    Article  ADS  Google Scholar 

  22. Aharonov Y., Anandan J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett 58, 1593–1596 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  23. Aharonov Y., Bohm D.: Significance of electromagnetic potentials in the quantum theory. Phys. Rev 115, 485–491 (1959)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. Dowling J.P., Williams C., Franson J.D.: Maxwell duality, Lorentz invariance, and topological phase. Phys. Rev. Lett. 83, 2486–2489 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Furtado C., Duarte G.: Dual Aharonov-Bohm effect. Phys. Scr. 71, 7–11 (2005)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  26. Allman B.E. et al.: Scalar Aharonov-Bohm experiment with neutrons. Phys. Rev. Lett. 68, 2409–2412 (1992)

    Article  ADS  Google Scholar 

  27. Allman B.E. et al.: Observation of the scalar Aharonov-Bohm effect by neutron interferometry. Phys. Rev. A 48, 1799–1807 (1993)

    Article  ADS  Google Scholar 

  28. Aharonov Y., Casher A.: Topological quantum effects for neutral particles. Phys. Rev. Lett. 53, 319–321 (1984)

    Article  MathSciNet  ADS  Google Scholar 

  29. He X.-G., McKellar B.H.J.: Topological phase due to electric dipole moment and magnetic monopole interaction. Phys. Rev. A 47, 3424–3425 (1993)

    Article  ADS  Google Scholar 

  30. Wilkens M.: Quantum phase of a moving dipole. Phys. Rev. Lett. 72, 5–8 (1994)

    Article  ADS  Google Scholar 

  31. Wei H., Han R., Wei X.: Quantum phase of induced dipoles moving in a magnetic field. Phys. Rev. Lett. 75, 2071–2073 (1995)

    Article  ADS  Google Scholar 

  32. Hagen C.R.: Comment on “quantum phase of induced dipoles moving in a magnetic field”. Phys. Rev. Lett. 77, 1656 (1996)

    Article  ADS  Google Scholar 

  33. Wei H., Wei X., Han R.: Reply. Phys. Rev. Lett. 77, 1657 (1996)

    Article  ADS  Google Scholar 

  34. Chen C.-C.: Topological quantum phase and multipole moment of neutral particles. Phys. Rev. A 51, 2611–2613 (1995)

    Article  ADS  Google Scholar 

  35. Ericsson M., Sjöqvist E.: Quantum computation using the Aharonov-Casher set up. Phys. Lett. A 303, 7–10 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  36. Ionicioiu R.: Quantum gates with topological phases. Phys. Rev. A 68, 034305 (2003)

    Article  ADS  Google Scholar 

  37. Bakke K., Furtado C., Sergeenkov S.: Holonomic quantum computation associated with a defect structure of conical graphene. EPL 87, 30002 (2009)

    Article  ADS  Google Scholar 

  38. Kleinert H.: Gauge Fields in Condensed Matter, Vol. 2. World Scientific, Singapore (1989)

    Google Scholar 

  39. Katanaev M.O., Volovich I.V.: Theory of defects in solids and three-dimensional gravity. Ann. Phys. (NY) 216, 1–28 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  40. Moraes F.: Condensed matter physics as a laboratory for gravitation and cosmology. Braz. J. Phys 30, 304–308 (2000)

    Article  Google Scholar 

  41. Ford L.H., Vilenkin A.: A gravitational analogue of the Aharonov-Bohm effect. J. Phys. A, Math. Gen. 14, 2353–2357 (1981)

    Article  MathSciNet  ADS  Google Scholar 

  42. Bezerra V.B.: Gravitational analogue of the Aharonov-Bohm effect in four and three dimensions. Phys. Rev. D 35, 2031–2033 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  43. Furtado C., de Carvalho A.M.M., de Lima Ribeiro C.A.: Aharonov-Bohm effect and disclinations in an elastic medium. Mod. Phys. Lett. A 21, 1393–1403 (2006)

    Article  ADS  MATH  Google Scholar 

  44. Resnik B.: Gravitational analogue of the Aharonov-Casher effect. Phys. Rev. D 51, 3108–3112 (1995)

    Article  ADS  Google Scholar 

  45. Moraes F.: Geodesics around a dislocation. Phys. Lett. A 214, 189–192 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. de Padua A. et al.: Geodesics around line defects in elastic solids. Phys. Lett. A 238, 153–158 (1998)

    Article  ADS  Google Scholar 

  47. Furtado C., Moraes F., de Carvalho A.M.M.: Geometric phases in graphitic cones. Phys. Lett. A 372, 5368–5371 (2008)

    Article  ADS  MATH  Google Scholar 

  48. Bakke K., de Carvalho A.M.M., Furtado C.: Circular orbits in cosmic string and Schwarzschild-AdS spacetime with Fermi-Walker transport. Eur. Phys. J. C 63, 149–155 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  49. Nielsen M.A., Dowling M.R., Gu M., Doherty A.C.: Quantum computation as geometry. Science 311, 1133–1135 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  50. Anandan J.: Topological and geometrical phases due to gravitational field with curvature and torsion. Phys. Lett. A 195, 284–292 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  51. Bakke K., de Carvalho A.M.M., Furtado C.: Relativistic Einstein-Podolsky-Rosen correlations in the cosmic string space-time via Fermi-Walker transport. Int. J. Quantum Inf. 8, 1277–1288 (2010)

    Article  MATH  Google Scholar 

  52. de Assis J.G., Furtado C., Bezerra V.B.: Gravitational Berry’s quantum phase. Phys. Rev. D 62, 045003 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  53. Bakke K., Pedrosa I.A., Furtado C.: Geometric phases and squeezed quantum states of relic gravitons. J. Math. Phys. 50, 113521 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  54. Bakke K., Furtado C.: Scalar Aharonov-Bohm effect in the presence of a topological defect. Ann. Phys. (Berlin) 522, 447–455 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  55. Bakke K., Nascimento J.R., Furtado C.: Geometric phase for a neutral particle in the presence of a topological defect. Phys. Rev. D 78, 064012 (2008)

    Article  ADS  Google Scholar 

  56. Bakke K., Furtado C., Nascimento J.R.: Gravitational geometric phase in the presence of torsion. Eur. Phys. J. C 60, 501–507 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Bakke K., Furtado C., Nascimento J.R.: Erratum to: Gravitational geometric phase in the presence of torsion. Eur. Phys. J. C 64, 169 (2009)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Bakke K., Furtado C.: Geometric phase for a neutral particle in rotating frames in a cosmic string spacetime. Phys. Rev. D 80, 024033 (2009)

    Article  ADS  Google Scholar 

  59. Bakke K., Furtado C.: Anandan quantum phase for a neutral particle with Fermi-Walker reference frame in the cosmic string background. Eur. Phys. J. C 69, 531–539 (2010)

    Article  ADS  Google Scholar 

  60. Bakke K., Furtado C.: Holonomic quantum computation with the Aharonov-Casher setup associated with topological defects. Quantum Inf. Comput. 11, 444–455 (2011)

    MathSciNet  MATH  Google Scholar 

  61. Bakke K., Furtado C.: Quantum holonomies for an electric dipole moment. Phys. Lett. A 375, 3956–3959 (2011)

    Article  MathSciNet  ADS  Google Scholar 

  62. Bakke K., Furtado C.: Holonomic quantum computation based on the scalar Aharonov-Bohm effect for neutral particles and linear topological defects. Ann. Phys. (NY) 327, 376–385 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  63. Weinberg S.: Gravitation and cosmology: principles and aplications of the general theory of relativity. IE-Wiley, New York (1972)

    Google Scholar 

  64. Nakahara M.: Geometry, Topology and Physics. Institute of Physics Publishing, Bristol (1998)

    Google Scholar 

  65. Shapiro I.L.: Physical aspects of the space-time torsion. Phys. Rep. 357, 113–213 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  66. Birrel N.D., Davies P.C.W.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  67. Foldy L.L., Wouthuysen S.A.: On the dirac theory of spin 1/2 particles and its non-relativistic limit. Phys. Rev. 78, 29–36 (1950)

    Article  ADS  MATH  Google Scholar 

  68. Dias L., Moraes F.: Effects of torsion on electromagnetic fields. Braz. J. Phys. 35, 636–640 (2005)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Knut Bakke.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bakke, K., Furtado, C. One-qubit quantum gates associated with topological defects in solids. Quantum Inf Process 12, 119–128 (2013). https://doi.org/10.1007/s11128-012-0358-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-012-0358-y

Keywords

Navigation