Skip to main content
Log in

Optimal correction of concatenated fault-tolerant quantum codes

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We present a method of concatenated quantum error correction in which improved classical processing is used with existing quantum codes and fault-tolerant circuits to more reliably correct errors. Rather than correcting each level of a concatenated code independently, our method uses information about the likelihood of errors having occurred at lower levels to maximize the probability of correctly interpreting error syndromes. Results of simulations of our method applied to the [[4,1,2]] subsystem code indicate that it can correct a number of discrete errors up to half of the distance of the concatenated code, which is optimal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kitaev A.: Fault-tolerant quantum computation by anyons. Ann. Phys. 303, 2 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Raussendorf R., Harrington J., Goyal K.: Topological fault-tolerance in cluster state quantum computation. New J. Phys. 9, 199 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  3. Knill, E., Laflamme, R.: Concatenated quantum codes. arXiv:quant-ph/9608012 (1996)

  4. Shor, P.: Scheme for reducing decoherence in quantum computer memory. Phys. Rev. A 52: 2493(R) (1995)

  5. Steane A.M.: Active stabilization, quantum computation, and quantum state synthesis. Phys. Rev. Lett. 78, 2252 (1997)

    Article  ADS  Google Scholar 

  6. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Aharonov D., Ben-Or M.: Fault-tolerant quantum computation with constant error. Proc. ACM Symp. Theory Comput. 29, 176 (1998)

    MATH  Google Scholar 

  8. Aharonov, D., Ben-Or, M.: Fault-tolerant quantum computation with constant error rate. arXiv:quant-ph/9906129 (1999)

  9. Knill E., Laflamme R., Zurek W.: Resilient quantum computation: error models and thresholds. Proc. R. Soc. Lond. A 454, 365 (1998)

    Article  ADS  MATH  Google Scholar 

  10. Preskill J.: Reliable quantum computers. Proc. R. Soc. Lond. A 454, 385 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Aliferis P., Gottesman D., Preskill J.: Quantum accuracy threshold for concatenated distance-3 codes. Quantum Inf. Comput. 6, 97 (2006)

    MathSciNet  MATH  Google Scholar 

  12. Poulin D.: Optimal and efficient decoding of concatenated quantum block codes. Phys. Rev. A 74, 052333 (2006)

    Article  ADS  Google Scholar 

  13. Evans Z.W.E., Stephens A.M.: Message passing in fault tolerant quantum error correction. Phys. Rev. A 78, 062317 (2008)

    Article  ADS  Google Scholar 

  14. Calderbank A.R., Shor P.W.: Good quantum error-correcting codes exist. Phys. Rev. A 54, 1098 (1996)

    Article  ADS  Google Scholar 

  15. Steane A.: Multiple-particle interference and quantum error correction. Proc. R. Soc. Lond. 452, 2551 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  16. Bacon D.: Operator quantum error correcting subsystems for self-correcting quantum memories. Phys. Rev. A 73, 012340 (2006)

    Article  ADS  Google Scholar 

  17. Stephens A.M., Evans Z.W.E.: Accuracy threshold for concatenated error detection in one dimension. Phys. Rev. A 80, 022313 (2009)

    Article  ADS  Google Scholar 

  18. Aliferis P., Cross A.W.: Subsystem fault tolerance with the Bacon-Shor code. Phys. Rev. Lett. 98, 220502 (2007)

    Article  ADS  Google Scholar 

  19. Knill E.: Quantum computing with realistically noisy devices. Nature 434, 39 (2005)

    Article  ADS  Google Scholar 

  20. Aliferis P., Preskill J.: The Fibonacci scheme for fault-tolerant quantum computation. Phys. Rev. A 79, 012332 (2009)

    Article  ADS  Google Scholar 

  21. Saito, M., Matsumoto, M.: SIMD-oriented fast Mersenne Twister: a 128-bit pseudorandom number generator. In: Monte Carlo and Quasi-Monte Carlo Methods, vol. 2, p. 607 (2006)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Stephens.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Evans, Z.W.E., Stephens, A.M. Optimal correction of concatenated fault-tolerant quantum codes. Quantum Inf Process 11, 1511–1521 (2012). https://doi.org/10.1007/s11128-011-0312-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0312-4

Keywords

Navigation