Skip to main content
Log in

Multipartite entangled magnon states as quantum communication channels

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the entanglement properties of the two magnon states and explicate conditions under which, the two magnon state becomes useful for several quantum communication protocols. We systematically study the temporal behaviour of concurrence to find out the effect of exchange interaction on entanglement. The two magnon state, which is potentially realizable in quantum dots using Heisenberg exchange interaction, is found to be suitable for carrying out deterministic teleportation of an arbitrary two qubit composite system. Further, conditions for which the channel capacity reaches “Holevo bound”, allowing four classical bits to be transmitted through two qubits are derived. Later, an unconventional protocol is given to demonstrate that this state can be used for sharing of a two qubit entangled state among two parties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Schrödinger E.: Discussion of probability relations between separated systems. Proc. Camb. Philos. Soc. 31, 555–563 (1935)

    Article  ADS  Google Scholar 

  2. Einstein A., Podolsky B., Rosen N.: Can quantum-mechanical description of physical reality be considered complete?.  Phys. Rev. 47, 777 (1935)

    ADS  MATH  Google Scholar 

  3. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  4. Vedral V.: Introduction to Quantum Information Science. Oxford University Press, Oxford (2006)

    Book  MATH  Google Scholar 

  5. Bose S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  6. Rao, D.D.B., Ghosh, S., Panigrahi, P.K.: Generation of entangled channels for perfect teleportation using multielectron quantum dots. Phys. Rev. A 78, 042328 (2008) and references therein

    Google Scholar 

  7. DiVincenzo D.P., Bacon D., Kempe J., Burkard G., Whaley K.B.: Universal quantum computation with the exchange interaction. Nature 408, 339–342 (2004)

    Article  ADS  Google Scholar 

  8. Arnesen M., Bose S., Vedral V.: Natural thermal and magnetic entanglement in the 1D Heisenberg model. Phys. Rev. Lett. 87, 017901 (2001)

    Article  ADS  Google Scholar 

  9. Raussendorf R., Briegel H.J.: A one-way quantum computer. Phys. Rev. Lett. 86, 5188–5191 (2001)

    Article  ADS  Google Scholar 

  10. Briegel H.J., Raussendorf R.: Persistent entanglement in arrays of interacting particles. Phys. Rev. Lett. 86, 910–913 (2001)

    Article  ADS  Google Scholar 

  11. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Muralidharan, S., Panigrahi, P.K.: Perfect teleportation, quantum-state sharing, and superdense coding through a genuinely entangled five-qubit state. Phys. Rev. A 77,032321 (2008) and references therein

  13. Bennett C.H., Wiesner S.J.: Communication via one-and two-particle operators on Einstein–Podolsky–Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Zheng S.B.: High-speed geometric quantum phase gates for trapped ions in thermal motion. Phys. Rev. A 74, 054303 (2006)

    Article  ADS  Google Scholar 

  15. Agrawal P., Pati A.K.: Perfect teleportation and superdense coding with W states. Phys. Rev. A 74, 062320 (2006)

    Article  ADS  Google Scholar 

  16. Oguchi T.: Theory of two-magnon bound states in the Heisenberg Ferro- and antiferromagnet. J. Phys. Soc. Jpn. 31, 394–402 (1971)

    Article  ADS  Google Scholar 

  17. Mattis D.C.: The Theory of Magnetism I: Statics and Dynamics. Springer, Berlin (1981)

    Book  Google Scholar 

  18. Gorbachev V.N., Trubilko A.I., Rodichkina A.A., Zhiliba A.I.: Can the states of the W-class be suitable for teleportation?.  Phys. Lett. A 314, 267–271 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  19. Verstraete F., Dehaene J., Moor B.D., Verschelde H.: Four qubits can be entangled in nine different ways. Phys. Rev. A 65, 052112 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  20. Dur W., Vidal G., Cirac J.I.: Three qubits can be entangled in two inequivalent ways. Phys. Rev. A 62, 062314 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  21. Wang X.W., Shan Y.G., Xia L.X., Lu M.W.: Dense coding and teleportation with one-dimensional cluster states. Phys. Lett. A 364, 7–11 (2007)

    Article  ADS  MATH  Google Scholar 

  22. Wang Y., Su X., Shen H., Tan A., Xie C., Peng K.: Toward demonstrating controlled-X operation based on continuous-variable four-partite cluster states and quantum teleporters. Phys. Rev. A 81, 022311 (2010)

    Article  ADS  Google Scholar 

  23. Petta R., Johnson A.C., Taylor J.M., Laird E.A., Yacoby A., Lukin M.D., Marcus C.M., Hanson M.P., Gossard A.C.: Coherent manipulation of coupled electron spins in semiconductor quantum dots. Science 309, 2180 (2005)

    Article  ADS  Google Scholar 

  24. Schliemann J., Khaetskii A., Loss D.: Electron spin dynamics in quantum dots and related nanostructures due to hyperfine interaction with nuclei. J. Phys. Condens. Matter 15, 1809 (2003)

    Article  ADS  Google Scholar 

  25. Ashoori R.C.: Electrons in artificial atoms. Nature 379, 413–419 (1996)

    Article  ADS  Google Scholar 

  26. Laird E.A., Petta J.R., Johnson A.C., Marcus C.M., Yacoby A., Hanson M.P., Gossard A.C.: Effect of exchange interaction on spin dephasing in a double quantum dot. Phys. Rev. Lett. 97, 056801 (2006)

    Article  ADS  Google Scholar 

  27. Schmidt E.: Zur Theorie der linearen und nichtlinearen Integralgleichungen. Mathematische Annalen 63, 433–476 (1906)

    Article  Google Scholar 

  28. Wu E., Zhang X.-A.: Dynamics of pairwise entanglement in the three-qubit Heisenberg XX spin chain. Int. J. Quant. Info. 8, 1447–1458 (2009)

    Article  Google Scholar 

  29. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  30. O’Connor K.M., Wootters W.K.: Entangled rings. Phys. Rev. A 63, 052302 (2001)

    Article  ADS  Google Scholar 

  31. Brus D., Ariano G.M.D., Lewenstein M., Macchiavello C., Sen(De) A., Sen U.: Distributed quantum dense coding. Phys. Rev. Lett. 93, 210501 (2004)

    Article  ADS  Google Scholar 

  32. Hillery M., Buzek V., Berthiaume A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  MathSciNet  ADS  Google Scholar 

  33. Bandyopadhyay S.: Phys. Rev. A 62, 012308 (2000)

    Article  ADS  Google Scholar 

  34. Tittel W., Zbinden H., Gisin N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  35. Schmid C., Trojek P., Bourennane M., Kurtsiefer C., Z̆ukowski M.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95, 230505 (2005)

    Article  ADS  Google Scholar 

  36. Muralidharan S., Panigrahi P.K.: Quantum-information splitting using multipartite cluster states. Phys. Rev. A 78, 062333 (2008)

    Article  ADS  Google Scholar 

  37. Choudhury S., Muralidharan S., Panigrahi P.K.: Quantum teleportation and state sharing using a genuinely entangled six-qubit state. J. Phys. A Math. Theor. 42, 115303 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  38. Muralidharan S., Karumanchi, S., Srikanth, R., Panigrahi, P.K.: In how many ways can quantum information be split? arXiv:quant-ph/0907.3532v1 (2009)

  39. Rao D.D.B., Panigrahi P.K., Mitra C.: Teleportation in the presence of common bath decoherence at the transmitting station. Phys. Rev. A 78, 022336 (2008)

    Article  ADS  Google Scholar 

  40. Kiesel N., Schmid C., Toth G., Solano E., Weinfurter H.: Experimental observation of four-photon entangled Dicke state with high fidelity. Phys. Rev. Lett. 98, 063604 (2007)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prasanta K. Panigrahi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Prasath, E.S., Muralidharan, S., Mitra, C. et al. Multipartite entangled magnon states as quantum communication channels. Quantum Inf Process 11, 397–410 (2012). https://doi.org/10.1007/s11128-011-0252-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0252-z

Keywords

Navigation