Skip to main content
Log in

Entanglement and Yangian in a \({V^{\otimes 3}}\) Yang-Baxter system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, a 8 × 8 unitary Yang-Baxter matrix \({\breve{R}_{123}(\theta_{1},\theta_{2},\phi)}\) acting on the triple tensor product space, which is a solution of the Yang-Baxter Equation for three qubits, is presented. Then quantum entanglement and the Berry phase of the Yang-Baxter system are studied. The Yangian generators, which can be viewed as the shift operators, are investigated in detail. And it is worth mentioning that the Yangian operators we constructed are independent of choice of basis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Werner R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  2. Nielsen M.A, Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  3. Stenholm S., Suominen K.-A.: Quantum Approach to Informatics. Wiley, Hoboken (2005)

    Book  MATH  Google Scholar 

  4. Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl 32, 254–258 (1985)

    Google Scholar 

  5. Bernard, D: An introduction to Yangian symmetries. Int. J. Mod. Phys. B7 3517C3530, (1993). [hep-th/9211133]

  6. Arnaudon, D., Molev, A., Ragoucy, E.: On the R-matrix realization of Yangians and their representations. Annales Henri Poincare, 7, 1269–1325, (2006). [math.QA/0511481v1]

    Google Scholar 

  7. Bai, C.M., Ge, M.L., Xue K.: Yangian and its applications. Inspired by s.s. chen: A Memorial vol.II in Honor of A Great Mathematician, Edited by P.A. Griffiths, World Scientific, Singapore, pp. 45–93, (2006)

  8. Tian L.J., Zhang H.B., Jin S., Xue K.: Y(sl(2)) algebra application in extended hydrogen atom and monopolemodels. Commun. Theor. Phys. 41, 641 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Ge M.L., Kwek L.C., Oh C.H., Xue K.: Yangians and transition operators. Czech. J. phys. 50, 1229 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  10. Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction; S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys. Rev. Lett. 19, 1312 (1967)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Yang C.N.: Some exact results for the many-body problem in one dimension with repulsive delta-function interaction; S matrix for the one-dimensional N-body problem with repulsive or attractive δ-function interaction. Phys. Rev. 168, 1920 (1968)

    Article  ADS  Google Scholar 

  12. Baxter R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  13. Baxter R.J.: Partition function of the eight-vertex lattice model. Ann. Phys. 70, 193 (1972)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  14. Drinfeld V.G.: Hopf algebras and the quantum Yang-Baxter equation. Soviet Math. Dokl 32, 254–258 (1985)

    Google Scholar 

  15. Drinfeld V.G.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl 35, 212–216 (1988)

    MathSciNet  Google Scholar 

  16. Drinfel’d, V.G.: Quantum groups. In: Proceedings of the International Congress of Mathematicians, Berkeley, California, 1986, vol. 1, pp. 798–820. Amer. Math Soc., Providence, RI (1987)

  17. Kitaev A.Y: Fault-tolerant quantum computation by anyons. Ann. Phys 303, 2 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Kauffman L.H., Lomonaco S.J. Jr.: Braiding operators are universal quantum gates. New J. Phys. 6, 134 (2004)

    Article  ADS  Google Scholar 

  19. Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theor. Ramif. 15, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Zhang Y., Kauffman L.H., Ge M.L.: Universal quantum gate, Yang-Baxterization and Hamiltonian. Int. J. Quant. Inf. 3, 669 (2005)

    Article  MATH  Google Scholar 

  21. Zhang Y., Ge M.L.: GHZ states, almost-complex structure and Yang–Baxter equation; from extraspecial two-groups to GHZ states. Quant. Inf. Proc. 6, 363 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z.H., Ge M.L.:GHZ states, almost-complex structure and Yang–Baxter equation; From extraspecial two-Groups to GHZ states. e-print quant-ph/0706.1761

  23. Chen J.L., Xue K., Ge M.L.: Braiding transformation, entanglement swapping, and Berry phase in entanglement space. Phys. Rev. A 76, 042324 (2007)

    Article  ADS  Google Scholar 

  24. Chen J.L., Xue K., Ge M.L.: Berry phase and quantum criticality in Yang–Baxter systems. Ann. Phys. 323, 2614 (2008)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  25. Chen, J.L., Xue, K., Ge, M.L.: All pure two-qudit entangled states can be generated via a universal Yang–Baxter matrix assisted by local unitary transformations. e-print quant-ph/0809.2321

  26. Hu T.T., Xue K., Wu C.F.: Berry phase and entanglement of three qubits in a new Yang–Baxter system. J. Math. Phys. 50, 083509 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  27. Franko J.M., Rowell E.C., Wang Z.: Extraspecial 2-groups and images of braid group representations. J. Knot Theor. Ramif. 15, 413 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zhang, Y., Rowell, E.C., Wu, Y.S., Wang, Z., Ge, M.L.:Extraspecial two-groups, generalized Yang-Baxter equations and braiding quantum gates. e-print arXiv:0706.1761

  29. Fulton W., Harris J.: Representation Theory—A First Course. Vol. 129. Springer, New York (1991)

    Google Scholar 

  30. Griess R.: Automorphisms of extra special groups and nonvanishing degree two cohomology. Pacific J. Math. 48(2), 403–422 (1973)

    MathSciNet  MATH  Google Scholar 

  31. Coffman V., Kundu J., Wootters W.K.: Distributed entanglement. Phys. Rev. A 61, 052306 (2000)

    Article  ADS  Google Scholar 

  32. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245 (1998)

    Article  ADS  Google Scholar 

  33. Berry M.V.: Quantal phase factors accompanying adiabatic changes. Proc. R. Soc. Lond. Ser. A 392, 45 (1984)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang Xue.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, C., Xue, K., Wang, G. et al. Entanglement and Yangian in a \({V^{\otimes 3}}\) Yang-Baxter system. Quantum Inf Process 11, 385–395 (2012). https://doi.org/10.1007/s11128-011-0245-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-011-0245-y

Keywords

Navigation