Skip to main content
Log in

Entanglement generation with deformed Barut-Girardello coherent states as input states in an unitary beam splitter

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Using linear entropy as a measure of entanglement, we investigate the entanglement generated via a beam splitter using deformed Barut-Girardello coherent states. We show that the degree of entanglement depends strongly on the q-deformation parameter and amplitude Z of the states. We compute the Mandel Q parameter to examine the quantum statistical properties of these coherent states and make a comparison with the Glauber coherent states. It is shown that these states are useful in describing the states of real and ideal lasers by a proper choice of their characterizing parameters, using an alteration of the Holstein-Primakoff realization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wang J., Pan Q., Chen S., Jing J.: Entanglement of coupled massive scalar field in background of dilaton black hole. J. Phys. Lett. B 667, 186–189 (2009)

    Article  MathSciNet  ADS  Google Scholar 

  2. Ekert A.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  3. Bennett C.H., Brassard G., Crepeau C., Jozsa R., Peres A., Wootters W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  4. Bennett C.H., Wiesner S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  5. Ekert A., Jozsa R.: Quantum computation and Shor’s factoring algorithm. Rev. Mod. Phys. 68, 733–753 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  6. Huver S.D., Wildfeuer C.F., Dowling J.P.: Entangled Fock states for robust quantum optical metrology, imaging and sensing. Phys. Rev. A 78, 063828 (2008)

    Article  ADS  Google Scholar 

  7. Aspachs M., Calsamiglia J., Muñz-Tapia R., Bagan E.: Phase estimation for thermal Gaussian states. Phys. Rev. A 79, 033834 (2009)

    Article  ADS  Google Scholar 

  8. Berrada K., El Baz M., Saif F., Hassouni Y., Mnia S.: Entanglement generation from deformed spin coherent states using a beam splitter. J. Phys. A Math. Theor. 42, 285306 (2009)

    Article  MathSciNet  Google Scholar 

  9. Bose S., Vedral V.: Mixedness and teleportation. Phys. Rev. A 61, 040101 (2000)

    Article  ADS  Google Scholar 

  10. Wei T.-C., Nemoto K., Goldbart P.M., Kwiat P.G., Munro W.J., Verstraete F.: Maximal entanglement versus entropy for mixed quantum states. Phys. Rev. A 67, 022110 (2003)

    Article  ADS  Google Scholar 

  11. Berrada K., Chafik A., Eleuch H., Hassouni Y.: Concurrence in the framework of coherent states. Quant. Inf. Process. 9, 13–26 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  12. Wootters W.K.: Entanglement of formation of an arbitrary state of two qubits. Phys. Rev. Lett. 80, 2245–2248 (1998)

    Article  ADS  Google Scholar 

  13. Rungta P., Buzek V., Caves C.M., Hillery M., Milburn G.J.: Universal state inversion and concurrence in arbitrary dimensions. Phys. Rev. A 64, 042315 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  14. Uhlmann A.: Fidelity and concurrence of conjugated states. Phys. Rev. A 62, 032307 (2000)

    Article  MathSciNet  ADS  Google Scholar 

  15. Popescu S., Rohrlich D.: Thermodynamics and the measure of entanglement. Phys. Rev. A 56, R3319–R3321 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  16. Peres A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413–1415 (1996)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Vidal G., Werner R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  18. Tan S.M., Walls D.F., Collett M.J.: Nonlocality of a single photon. Phys. Rev. Lett. 66, 252–255 (1991)

    Article  ADS  Google Scholar 

  19. Toth G., Simon C., Cirac J.I.: Entanglement detection based on interference and particle counting. Phys. Rev. A 68, 062310 (2003)

    Article  ADS  Google Scholar 

  20. Zheng S.-B., Guo G.-C.: Efficient scheme for two-atom entanglement and quantum information processing in cavity QED. Phys. Rev. Lett. 85, 2392–2395 (2000)

    Article  ADS  Google Scholar 

  21. Gershenfeld N., Chuang I.L.: Bulk spin-resonance quantum computation. Science 275, 350–356 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim M.S., Son W., Buzek V., Knight P.L.: Entanglement by a beam splitter: nonclassicality as a prerequisite for entanglement. Phys. Rev. A 65, 032323 (2002)

    Article  ADS  Google Scholar 

  23. Ivan, J.S., Mukunda, N., Simon, R.: Generation of NPT Entanglement from Nonclassical Photon Statistics, Quant-Ph/0603255

  24. Hassouni Y., Curado E.M.F., Rego-Monteiro M.A.: Construction of coherent states for physical algebraic systems. Phys. Rev. A 71, 022104 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  25. Curado E.M.F., Rego-Monteiro M.A., Rodrigues Ligia M.C.S., Hassouni Y.: Coherent states for a degenerate system: the hydrogen atom. Physica A 371, 16–19 (2006)

    Article  ADS  Google Scholar 

  26. Robles-Perez S., Hassouni Y., Gonzalez-Diaz P.F.: Coherent states in the quantum multiverse. Phys. Lett. B 683, 1–6 (2010)

    Article  ADS  Google Scholar 

  27. Schrödinger E.: Der Stetige Übergang von der Mikro-zur Makromechanik. Naturwissenschaften. 14, 664–666 (1926)

    Article  ADS  Google Scholar 

  28. Glauber R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766–2788 (1963)

    Article  MathSciNet  ADS  Google Scholar 

  29. Perlomov A.M.: Coherent states for arbitrary Lie group. Commun. Math. Phys. 26, 222–236 (1972)

    Article  ADS  Google Scholar 

  30. Perelomov A.: Generalized Coherent States and their Applications. Springer, New York (1986)

    MATH  Google Scholar 

  31. Klauder J.R., Skagertam B.: Coherent States: Application in Physics and Mathematical Physics. World Scientific, Singapore (1985)

    Google Scholar 

  32. Zhang W.-M., Feng D.H., Gilmore R.: Coherent states: theory and some applications. Rev. Mod. Phys. 62, 867–927 (1990)

    Article  MathSciNet  ADS  Google Scholar 

  33. Inomata A., Kuratsuji H., Gerry C.: Path Integrals and Coherent States of SU(2) and SU(1,1). World Scientific, Singapore (1992)

    Google Scholar 

  34. Jurco B.: On coherent states for the simplest quantum groups. Lett. Math. Phys. 21, 51–58 (1991)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  35. Dodonov V.V.: Nonclassical states in quantum optics: a squeezed review of the first 75 years. J. Opt. B Quant. Semiclass. Opt. 4, R1 (2002)

    Article  MathSciNet  ADS  Google Scholar 

  36. El Baz M., Hassouni Y., Madouri F.: New construction of coherent states for generalized harmonic oscillators. Rep. Math. Phys. 50, 263–275 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Marchiolli M.A.: On the q-deformed coherent states of a generalized f-oscillator. Phys. Scr. 73, 62–73 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  38. Burban I.M.: Arik-Coon oscillator with q > 1 in the framework of unified (q;α, β, γ; ν)-deformation. J. Phys. A: Math. Theor. 43, 305204 (2010)

    Article  MathSciNet  Google Scholar 

  39. Ellinas, D.: On Coherent States and q-Deformed Algebras, Hep-Th/9309072 (1993)

  40. Peremolov A.M.: On the completeness of some subsystems of q-deformed coherent states. Helv. Phys. Acta 68, 554 (1996)

    Google Scholar 

  41. Scarfone, A.M., Swamy, P.N.: An interacting ensemble of particles in the context of quantum algebra. J. Stat. Mech. doi:10.1088/1742-5468/2009/02/P02055

  42. Chaturvedi S., Kappoor A.K., Sandhya R., Srinivasan V.: Generalized commutation relations for a single-mode oscillator. Phys. Rev. A 43, 4555–4557 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  43. Chiu S.H., Gray R.W., Nelson C.A.: The q-analogue quantized radiation field and its uncertainty relations. Phys. Lett. A 164, 237–242 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  44. Kimble H.J., Dagenais M., Mandel L.: Photon antibunching in resonance fluorescence. Phys. Rev. Lett. 39, 691–695 (1977)

    Article  ADS  Google Scholar 

  45. Teich M.C., Salch B.E.A.: Observation of sub-poisson FranchHertz light at 253.7 nm. J. Opt. Soc. Am. B 2, 275–282 (1985)

    Article  ADS  Google Scholar 

  46. Hong C.K., Mandel L.: Higher-order squeezing of a quantum field. Phys. Rev. Lett. 54, 323–325 (1985)

    Article  ADS  Google Scholar 

  47. Wu L.A., Kimble H.J., Hall J.L., Wu H.: Generation of squeezed states by parametric down conversion. Phys. Rev. Lett. 57, 2520–2523 (1986)

    Article  ADS  Google Scholar 

  48. Short R., Mandel L.: Observation of sub-poissonian photon statistics. Phys. Rev. Lett. 51, 384–387 (1983)

    Article  ADS  Google Scholar 

  49. Perina J., Hradil Z., Jurco B.: Quantum Optics and Fundamentals of Physics. Kluwer, Dordrechet (1994)

    Book  MATH  Google Scholar 

  50. Kuang L.-M., Wang F.-B.: The suq(1,1) q-coherent states and their nonclassical properties. Phys. Lett. A 173, 221–227 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  51. Chakrabarti R., Vasan S.S.: Entanglement via Barut-Girardello coherent state for su q (1,1) quantum algebra: bipartite composite system. Phys. Lett. A 312, 287–295 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Liu X.-M., Quesne C., Song F.: k-component q-deformed charge coherent states and their nonclassical properties. J. Math. Phys. 46, 072106 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  53. Katriel J., Solomon A.I.: Nonideal lasers, nonclassical light, and deformed photon states. Phys. Rev. A 49, 5149–5151 (1994)

    Article  ADS  Google Scholar 

  54. Klimyk A.U., Schmudgen K.: Quantum Groups and their Representations. Springer, Berlin (1997)

    MATH  Google Scholar 

  55. Chakrabarti R., Vasan S.S.: On completeness of Barut-Girardello coherent states of su q (1, 1) algebra. J. Phys. A Math. Gen. 37, 10561–10570 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  56. Shanta P., Chaturvedi S., Srinivasan V., Jagannathan R.: Unified approach to the analogues of single-photon and multiphoton coherent states for generalized bosonic oscillators. J. Phys. A Math. Gen. 27, 6433 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  57. Wang X.G., Sanders B.C., Pan S.H.: Entangled coherent states for systems with SU(2) and SU(1,1) symmetries. J. Phys. A Math. Gen. 33, 7451–7467 (2000)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  58. Nielsen M.A.: Conditions for a class of entanglement transformations. Phys. Rev. Lett. 83, 436–439 (1999)

    Article  ADS  Google Scholar 

  59. Gerry C.C., Benmoussa A.: Beam splitting and entanglement: generalized coherent states, group contraction, and the classical limit. Phys. Rev. A 71, 062319 (2005)

    Article  ADS  Google Scholar 

  60. Macfarlane A.J.: On q-analogues of the quantum harmonic oscillator and the quantum group SU(2) q . J. Phys. A Math. Gen. 22, 4587 (1989)

    Article  MathSciNet  ADS  Google Scholar 

  61. Mandel L., Wolf E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1955)

    Google Scholar 

  62. Zukowski M., Zeilinger A., Horne M.A., Ekert A.E.: Event-ready-detectors bell experiment via entanglement swapping. Phys. Rev. Lett. 71, 4287–4290 (1993)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Berrada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Berrada, K., Benmoussa, A. & Hassouni, Y. Entanglement generation with deformed Barut-Girardello coherent states as input states in an unitary beam splitter. Quantum Inf Process 10, 575–588 (2011). https://doi.org/10.1007/s11128-010-0215-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0215-9

Keywords

Navigation