Skip to main content
Log in

Controlled gates for multi-level quantum computation

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Multi-level (ML) quantum logic can potentially reduce the number of inputs/outputs or quantum cells in a quantum circuit which is a limitation in current quantum technology. In this paper we propose theorems about ML-quantum and reversible logic circuits. New efficient implementations for some basic controlled ML-quantum logic gates, such as three-qudit controlled NOT, Cycle, and Self Shift gates are proposed. We also propose lemmas about r-level quantum arrays and the number of required gates for an arbitrary n-qudit ML gate. An equivalent definition of quantum cost (QC) of binary quantum gates for ML-quantum gates is introduced and QC of controlled quantum gates is calculated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M.A., Chuang I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge, MA (2000)

    MATH  Google Scholar 

  2. Landauer R.: Irreversibility and heat generation in the computational process. IBM J. Res. Dev. 5, 183–191 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  3. Fredkin, E., Toffoli, T.: Conservative Logic. Int. J. Theo. Phys., 219–253 (1982)

  4. Toffoli T.: Reversible Computing in Automata, Languages and Programming, pp. 632–644. Springer-Verlag, Berlin (1980)

    Book  Google Scholar 

  5. Mohammadi, M., Eshghi, M.: Heuristic methods to use don’t cares in automated design of reversible and quantum logic circuits. In: Quantum Information Processing Journal 7(4):175–192, Aug (2008)

  6. Mohammadi, M., Eshghi, M.: On figures of merit in reversible and quantum logic designs. In: Quantum Information Processing, Published online Feb 19 (2009)

  7. Perkowski, M., Al-Rabadi, A., Kerntopf, P.: Multiple-valued quantum logic synthesis. In: Proceedings of 2002 International Symposium on New Paradigm VLSI Computing, Sendai, Japan, Dec 12–14, pp. 41–47 (2002)

  8. Khan, M.H.A., Perkowski, M.A., Khan, M.R., Kerntopf, P.: Ternary GFSOP minimization using Kronecker decision diagrams and their synthesis with quantum cascades. Journal of Multiple-Valued Logic and Soft Computing: Special Issue to Recognize T. Higuchi’s Contribution to Multiple-Valued VLSI Computing

  9. Miller, D.M., Maslov, D., Dueck, G.W.: Synthesis of quantum multiple-valued circuits. J. Multi-Valued Log. Soft Comput, submitted Feb (2004)

  10. Kahn, M.H.A., Perkowski, M.: Evolutionary algorithm based synthesis of multi-output ternary functions using quantum cascade of generalized ternary gates. Int. J. Multi-Valued Log. Soft Comput. (2005)

  11. Muthukrishnan, A., Stroud, Jr.,: Multivalued logic gates for quantum computation, Phys. Rev. A. 62(5), 052309/1–8

  12. Barenco A., Bennett C.H., Cleve R., DiVincenzo D.P., Margolus N., Shor P., Sleator T., Smolin J.A., Weinfurter H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  PubMed  CAS  Google Scholar 

  13. Brennen G.K., Bullock S.S., O’Leary D.P.: Efficient circuits for exact-universal computation with qudits. Quantum Inf. Comput. 6, 436–454 (2006)

    MathSciNet  MATH  Google Scholar 

  14. Rosenbaum, D., Perkowski, M.: Efficient implementation of controlled operations for multivalued quantum logic. ISMVL, 2009 39th International Symposium on Multiple-Valued Logic, pp. 86–91 (2009)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Majid Mohammadi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mohammadi, M., Niknafs, A. & Eshghi, M. Controlled gates for multi-level quantum computation. Quantum Inf Process 10, 241–256 (2011). https://doi.org/10.1007/s11128-010-0192-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0192-z

Keywords

Navigation