Skip to main content
Log in

Score operators of a qubit with applications

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The score operators of a quantum system are the symmetric logarithmic derivatives of the system’s parametrically defined quantum state. Score operators are central to the calculation of the quantum Fisher information (QFI) associated with the state of the system, and the QFI determines the maximum precision with which the state parameters can be estimated. We give a simple, explicit expression for score operators of a qubit and apply this expression in a series of settings. We treat in detail the task of identifying a quantum Pauli channel from the state of its qubit output, and we show that a “balanced” probe state is highly robust for this purpose. The QFI for this task is a matrix, and we study its determinant, for which we establish a Cramér-Rao inequality.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fano U.: Description of states in quantum mechanics by density matrix and operator techniques. Rev. Mod. Phys. 29(1), 74–93 (1957)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  2. D’Ariano G.M., Paris M.G.A., Sacchi M.F.: Quantum tomographic methods. In: Paris, M.G.A., Řeháček, J. (eds) Quantum State Estimation, Springer, Berlin (2004)

    Google Scholar 

  3. Altepeter J.B., James D.F.V., Kwiat P.G.: Qubit quantum state tomography. In: Paris, M.G.A., Řeháček, J. (eds) Quantum State Estimation, Springer, Berlin (2004)

    Google Scholar 

  4. Helstrom C.W.: Quantum Detection and Estimation Theory. Academic Press, New York (1976)

    Google Scholar 

  5. Holevo A.S.: Probabilistic and Statistical Aspects of Quantum Theory. North-Holland Publishing, Amsterdam (1982)

    MATH  Google Scholar 

  6. Braunstein S.L., Caves C.M.: Statistical distance and the geometry of quantum states. Phys. Rev. Lett. 72(22), 3439–3443 (1994)

    Article  CAS  MathSciNet  ADS  PubMed  MATH  Google Scholar 

  7. Paris M.G.A.: Quantum estimation for quantum technology. Int. J. Quantum Inf. 5, 125–137 (2009)

    Article  Google Scholar 

  8. van Trees H.L.: Detection, Estimation, and Modulaiton Theory, Part I. Wiley, New York (2001)

    Google Scholar 

  9. Frey M.R., Collins D.: Quantum Fisher information and the qudit depolarization channel. In: Donkor, E.J., Pirich, A.R., Brandt, H.E. (eds) Quantum Information and Computing VII, SPIE 7342, Orlando, Florida (2009)

    Google Scholar 

  10. Fujiwara A.: Quantum channel identification problem. Phys. Rev. A 63, 042304 (2001)

    Article  ADS  Google Scholar 

  11. Petz D.: Quantum Information Theory and Quantum Statistics. Springer, Berlin (2008)

    MATH  Google Scholar 

  12. Johnson R.A., Wichern D.W.: Applied Multivariate Statistical Analysis, 6th edn. Pearson Prentice Hall, Upper Saddle River (2007)

    MATH  Google Scholar 

  13. Horn R.A., Johnson C.R.: Matrix Analysis. Cambridge University Press, Cambridge (1990)

    MATH  Google Scholar 

  14. Fujiwara A.: Estimation of a generalized amplitude-damping channel. Phys. Rev. A 70, 012317 (2004)

    Article  ADS  Google Scholar 

  15. Frey M.R., Coffey L.E., Mentch L.K., Miller A.L., Rubin S.S.: Pauli channels exhibit a transition effect in memory estimation above a parametric threshold. In: Donkor, E.J., Pirich, A.R., Brandt, H.E. (eds) Quantum Information and Computing VIII, SPIE, Orlando, Florida (2010)

    Google Scholar 

  16. Fujiwara A., Imai H.: Quantum parameter estimation of a generalized Pauli channel. J. Phys. A: Math. Gen. 36, 8093–8103 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Bickley W.G., McNamee J.: Matrix and other direct methods for the solution of systems of linear difference equations. Philos. Trans. R. Soc. Lond. A 252(1005), 69–131 (1960)

    Article  MathSciNet  ADS  Google Scholar 

  18. Slater P.B.: Applications of quantum and classical Fisher information to two-level complex and quaternionic and three-level complex systems. J. Math. Phys. 37(6), 2682–2693 (1995)

    Article  MathSciNet  ADS  Google Scholar 

  19. Boixo S., Monras A.: Operational interpretation for global entanglement. Phys. Rev. Lett. 100, 100503 (2008)

    Article  CAS  ADS  PubMed  Google Scholar 

  20. Fischer D.G., Mack H., Cirone M.A., Freyburger M.: Enhanced estimation of a noisy quantum channel using entanglement. Phys. Rev. A 64, 022309 (2001)

    Article  ADS  Google Scholar 

  21. Harville D.A.: Matrix Algebra from a Statistician’s Perspective. Springer, New York (1997)

    MATH  Google Scholar 

  22. Daems D.: Entanglement-enhanced transmission of classical information in Pauli channels with memory: exact solution. Phys. Rev. A 76, 012310 (2007)

    Article  ADS  Google Scholar 

  23. Hradil Z., Řeháček J., Fiurášek J., Ježek M.: Maximum-likelihood methods in quantum mechanics. In: Paris, M.G.A., Řeháček, J. (eds) Quantum State Estimation, Springer, Berlin (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael R. Frey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Frey, M.R., Miller, A.L., Mentch, L.K. et al. Score operators of a qubit with applications. Quantum Inf Process 9, 629–641 (2010). https://doi.org/10.1007/s11128-010-0170-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-010-0170-5

Keywords

Navigation