Skip to main content
Log in

Probabilities of Failure for Quantum Error Correction

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

We investigate the performance of a quantum error-correcting code when pushed beyond its intended capacity to protect against errors, presenting formulae for the probability of failure when the errors affect more qudits than that specified by the code’s minimum distance. Such formulae provide a means to rank different codes of the same minimum distance. We consider both error detection and error correction, treating explicit examples in the case of stabilizer codes constructed from qubits and encoding a single qubit

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Calderbank A.R., Rains E.M., Shor P.W., Sloane N.J.A. (1998). IEEE Trans. Inform. Theory 44:1369

    Article  MATH  MathSciNet  Google Scholar 

  2. Gottesman D., PhD Thesis, California Institute of Technology, Pasadena CA, (1997); e-print quant-ph/9705052

  3. Knill E., Laflamme R. (1997). Phys. Rev. A 55:900

    Article  ADS  MathSciNet  Google Scholar 

  4. Preskill J., Lecture Notes for Physics 219: Quantum Computation (California Institute of Technology, Pasadena CA, 1998). URL: http://www.theory.caltech.edu/people/preskill/ph219/

  5. Nielsen M.A., Chuang I.L. (2000). Quantum Computation and Quantum Information. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  6. Grassl M., in Mathematics of Quantum Computation:edited by R. K. Brylinski and G. Chen (Chapman & Hall/CRC, London, 2002

  7. Shor P. (1995). Phys. Rev. A 52:2493

    Article  ADS  Google Scholar 

  8. Steane A.M. (1996). Phys. Rev. Lett 77:793

    Article  MATH  ADS  MathSciNet  Google Scholar 

  9. Ashikhmin A.E., Barg A.M., Knill E., Litsyn S.N. (2000). IEEE Trans. Inform. Theory 46:778

    Article  MATH  MathSciNet  Google Scholar 

  10. Rains E.M. (1998). IEEE Trans. Inform. Theory 44:1388

    Article  MATH  MathSciNet  Google Scholar 

  11. Shor P., Laflamme R. (1997). Phys. Rev. Lett 78:1600

    Article  ADS  Google Scholar 

  12. Rains E.M. (1999). IEEE Trans. Inform. Theory 45:1827

    Article  MATH  MathSciNet  Google Scholar 

  13. Ashikhmin A., Knill E. (2001). IEEE Trans. Inform. Theory 47:3065

    Article  MATH  MathSciNet  Google Scholar 

  14. Grassl M., Beth T., Rötteler M. (2004). Int. J. Quantum Inf 2:55

    Article  MATH  Google Scholar 

  15. Gaborit P., Huffman W.C., Kim J.-L., Pless V. in DIMACS Series in Discrete Mathematics and Theoretical Computer Science Volume 56: Codes and Association Schemes:edited by A. Barg and S. Litsyn (American Mathematical Society, Providence RI, 2001

  16. Bachoc C., Gaborit P. Journal de Théorie des Nombres de Bordeaux 12:255 (2000); Electronic Notes in Discrete Mathematics 6:(2001).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. J. Scott.

Additional information

Pacs: 03.67.Pp

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, A.J. Probabilities of Failure for Quantum Error Correction. Quantum Inf Process 4, 399–431 (2005). https://doi.org/10.1007/s11128-005-0002-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11128-005-0002-1

Keywords

Navigation