Skip to main content
Log in

Unique features of the ‘photo-energetics’ of purple bacteria: a critical survey by the late Aleksandr Yuryevich Borisov (1930–2019)

  • Original article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

We provide here an edited version of the “Farewell discussion” by the late Aleksandr (Alex) Yuryevich (Yu) Borisov (1930–2019) on several aspects related to the excitation energy transfer in photosynthetic bacteria. It is preceded by a prolog giving the events that led to our decision to publish it. Further, we include here a few photographs to give a personal glimpse of this unique biophysicist of our time. In addition, we provide here a reminiscence, by Andrei B. Rubin, on the scientific beginnings of Borisov. This article follows a Tribute to Borisov by Semenov et al. (2019, Photosynthesis Research, this issue).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Agranovich VM, Galanin MD (1982) Electronic excitation energy transfer in condensed matter. In: Modern problems in condensed matter science. Agranovich VM, Maradudin AA (eds) North-Holland Publishing Company, Amsterdam, p 371

  • Birks JB, Munro IH (1967) The fluorescence lifetimes of aromatic molecules. Progr React Kinet 4:239–303

    CAS  Google Scholar 

  • Blankenship RE (2014) Molecular mechanisms of photosynthesis, 2nd edn. Wiley, Blackwell, p 319

    Google Scholar 

  • Borisov AY (2010) Specific aspects of energy migration between chlorophyll molecules in the membranes of photosynthetic organisms. Biochem (Moscow) Suppl Ser A 4(2):153–156

    Google Scholar 

  • Borisov AY (2013) A method for estimation of permittivity in photosynthetic membranes and the effect of permittivity on the photosynthetic quantum yield. Opt Spectrosc 114:211–221

    CAS  Google Scholar 

  • Borisov AY (2014) Efficiency of photochemical stages of photosynthesis in purple bacteria: critical survey. Biochem-Moscow 79(3):227

    CAS  Google Scholar 

  • Brunisholz RA, Zuber H (1992) Structure, function and organization of antenna polypeptides and antenna complexes from the three families of Rhodospirillaneae. Photochem Photobiol B 15:113–140

    CAS  Google Scholar 

  • Chamorovsky SK, Cherepanov CS, Chamorovsky SC, Semenov AY (2007) Correlation of electron transfer rate in photosynthetic reaction centers with intraprotein dielectric properties. Biochim Biophys Acta 1767(8):441–448

    CAS  PubMed  Google Scholar 

  • Clayton RK (1980) Photosynthesis: Physical mechanisms and chemical patterns. Cambridge University Press, Cambridge, New York, p 281

  • Cogdell RJ, Gall A, Köhler J (2006) The architecture and function of the light-harvesting apparatus of purple bacteria: from single molecules to in vivo membranes. Q Rev Biophys 39(3):227–324

    CAS  PubMed  Google Scholar 

  • Davydov A S (1971) Theory of Molecular Excitons. translated (from Russian to English) (trans: Dresner SB). Plenum Press, New York-London, p 313

  • Dutton PL (2016) Britton chance (24 July 1913—16 November 2010). Proc Am Philos Soc 160:310–312

    Google Scholar 

  • Fleming GR, van Grondelle R (1997) Femtosecond spectroscopy of photosynthetic light-harvesting systems. Curr Opin Struct Biol 7:738–748

    CAS  PubMed  Google Scholar 

  • Förster T (1948) Intermolecular energy migration and fluorescence (Engl. translation). Naturwissenschaften 6:166–175

    Google Scholar 

  • Förster T (1960) Excitation energy transfer. In: Kirby-Smith JS, Magee JL (eds) Comparative effects of radiation. Wiley, New York, pp 300–319

    Google Scholar 

  • Govindjee, Papageorgiou GC, Govindjee R (2019) Eugene I. Rabinowitch: a prophet of photosynthesis and of peace in the world. Photosynth Res 141:143–150

    CAS  PubMed  Google Scholar 

  • Hu X, Ritz T, Damjanovic A, Autenrieth F, Schulten K (2002) Photosynthetic apparatus of purple bacteria. Q Rev Biophys 35:1–62

    CAS  PubMed  Google Scholar 

  • Jordan P, Fromme P, Witt HT, Klukas O, Saenger W, Krauss N (2001) Three-dimensional structure of cyanobacterial photosystem I at 2.5 Å resolution. Nature 411:909–991

    CAS  PubMed  Google Scholar 

  • Khairutdinov RF, Serpone N (1997) Photophysics of cyanine dyes: subnanosecond relaxation dynamics in monomers, dimers, and H- and J-aggregates in solution. J Phys Chem B 101(14):2602

    CAS  Google Scholar 

  • Khan YR, Dykstra TE, Scholes GD (2008) Exploring the Förster limit in a small FRET pair. Chem Phys Lett 461:305–309

    CAS  Google Scholar 

  • Kiang NY, Siefert JS, Govindjee, Blankenship R (2007) Spectral signatures of photosynthesis. I. Review of earth organisms. J Astrobiol 7(1):222–251

    CAS  Google Scholar 

  • Klan P, Wirz J (2009) Photochemistry of organic compounds: from concepts to practice. Wiley-Blackwell, Chichester, p 582

    Google Scholar 

  • Knox RS (2012) Förster’s resonance excitation transfer theory: not just a formula. J Biomed Opt 17(1):011003

    PubMed  Google Scholar 

  • Knox RS, van Amerongen H (2002) Refractive index dependence of the Förster resonance energy transfer rate. J Phys Chem B 106:5289–5293

    CAS  Google Scholar 

  • Kodis G, Terazono Y, Liddell PA, Andreasson J, Garg V, Hambourger M, Moore T, Moore AL, Gust D (2006) Energy and photoinduced electron transfer in a wheel-shaped artificial photosynthetic antenna-reaction center complex. J Am Chem Soc 126:1818–1827

    Google Scholar 

  • Law CJ, Roszak AW, Southall J, Gardiner AT, Isaacs NW, Cogdell RJ (2004) The structure and function of bacterial light-harvesting complexes. Mol Membr Biol 21:183–191

    CAS  PubMed  Google Scholar 

  • Lee H, Cheng Y-C, Fleming GR (2007) Coherence dynamics in photosynthesis: protein protection of excitonic coherence. Science 316(5830):1462–1465

    CAS  PubMed  Google Scholar 

  • Mamedov M, Govindjee, Nadtochenko V, Semenov A (2015) Primary electron transfer processes in photosynthetic reaction centers from oxygenic organisms. Photosynth Res 125:51–63

    CAS  PubMed  Google Scholar 

  • Martin JL, Breton J, Hoff AJ, Migus A, Antonetti A (1986) Femtosecond spectroscopy of electron transfer in Rps. sphaeroides R-26. Proc Nat Acad Sci USA 83:957–961

    CAS  PubMed  Google Scholar 

  • Mikhailjuk IK, Knox PP, Paschenko VZ, Razjivin AP, Lokstein H (2006) Analysis of absorption spectra of purple bacterial reaction centers in the near infrared region by higher order derivative spectroscopy. Biophys Chem 122:16–26

    Google Scholar 

  • Minami T, Itoh S, Nakano M (2013) Signature of singlet open-shell character on the optically allowed singlet excitation energy and singlet triplet energy gap. J Phys Chem A 117(9):2000–2006

    CAS  PubMed  Google Scholar 

  • Mirkovic T, Ostrumov EE, Anna JM, van Grondelle R, Govindjee A, Scholes GD (2017) Light absorption and energy transfer in the antenna complexes of photosynthetic organisms. Chem Rev. https://doi.org/10.1007/10.1021/acs.chemrev.6b00002

    Article  PubMed  Google Scholar 

  • Novoderezhkin VI, Razjivin AP (1994) Exciton states of the antenna and energy trapping by the reaction center. Photosynth Res 42(1):9–15

    CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Razjivin AP (1995) Exciton dynamics in circular aggregates: application to antenna photosynthetic purple bacteria. Biophys J 68:1089–1100

    CAS  PubMed  PubMed Central  Google Scholar 

  • Novoderezhkin VI, Razjivin AP (1996) The theory of Förster-type migration between clusters of strongly interacting molecules: application to light-harvesting complexes of purple bacteria. Chem Phys 211(1–3):203–214

    CAS  Google Scholar 

  • Novoderezhkin VI, Monshower R, van Grondelle R (1999) Disordered exciton model for the core light-harvesting antenna of Rhodopseudomonas viridis. Biophys J 77:666–681

    CAS  PubMed  PubMed Central  Google Scholar 

  • Parkes-Loach PS, Sprinkle JR, Loach PA (1988) Reconstitution of the B873 light-harvesting complex of Rhodospirillum rubrum from the separately isolated α- and β-polypeptides and bacteriochlorophyll a. Biochemistry 27:2718–2727

    CAS  PubMed  Google Scholar 

  • Rabek JF (1982) Experimental methods in photochemistry and photophysics, part I and II. Wiley, Chichester, New York, Brisbane, Toronto, Singapore, p 1098

    Google Scholar 

  • Roznak AW, Howard TD, Southall J, Gardiner AT, Law KJ, Isaaks NW, Cogdell RJ (2003) Crystal structure of the RC-LH1 core complex from Rhodopseudomonas palustris. Science 302:1969–1972

    Google Scholar 

  • Scholes GD, Fleming GR, Olaya-Castro A, van Grondelle R (2011) Lessons from nature about solar light harvesting. Nat Chem 3:763–774

    CAS  PubMed  Google Scholar 

  • Semenov AY, Kotova EA, Razjivin AP, Govindjee (2019) A salute to Alexander Yurievich Borisov (1930–2019), an outstanding biophysicist. Photosynth Res, in the press. https://doi.org/10.1007/s11120-019-00674-1

  • Shuvalov VA, Sharkov AV, Matveetz YA, Krukov PG (1979) Picosecond detection of BChl-800 as an intermediate electron carrier between excited P870 and bacteriopheophytin in Rs. rubrum chromatophores. FEBS Lett 91:135–139

    Google Scholar 

  • Skulachev VP, Bogachev AV, Kasparinsky FO (2013) Principles of bioenergetics. Springer, New York, p 435

    Google Scholar 

  • Terenin AN (1967) Photonics of dye molecules and related organic compounds. Nauka, Leningrad, p 616 (in Russian)

    Google Scholar 

  • van der Meer W (1999) Orientational aspects of pair energy transfer. In: Andrews DL, Demidov AA (eds) Resonance energy transfer. Wiley, Chichester, New York, Weinhein, Singapore, Toronto, pp 151–172

    Google Scholar 

  • van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Chem Phys 8:793–807

    Google Scholar 

  • van Grondelle R, Dekker JP, Gillbro T, Sundström V (1994) Energy transfer and trapping in photosynthesis. Biochim Biophys Acta 1187:1–65

    CAS  Google Scholar 

  • Woodbury NW, Backer M, Middendorf D, Parson WW (1986) Picosecond kinetics of the initial electron transfer in bacterial RCs. Biochemistry 24:7516–7521

    Google Scholar 

  • Wraight CA (2014) Roderick K. Clayton: a life, and some personal recollections. Photosynth Res 120:9–26

    CAS  PubMed  Google Scholar 

  • Yakovlev AG, Shuvalov VA (2016) Physical stage of photosynthesis charge separation. Phys Usp 59:531–557

    CAS  Google Scholar 

  • Yang M, Agarwal R, Fleming GR (2001) The mechanism of energy transfer in antenna of photosynthetic bacteria. J Photochem Photobiol, A 142:107–119

    CAS  Google Scholar 

  • Yaser RK, Dykstraa TE, Scholes GD (2008) Exploring the Förster limit in small FRET pair. Chem Phys Lett 461:305–309

    Google Scholar 

Download references

Acknowledgements

We thank Mahir Mamedov for reading this manuscript and for discussing its content with one of us (APR) and for approving it for publication. We thank Andrei Borisov, son of Alex Borisov, for the photographs except Fig. 2. We whole-heartedly thank the two anonymous readers for their critical comments that led us to quote Abraham Maslow and to add caveats—hoping for others to examine, extend, challenge and provide a final picture on the overall mechanism of the photo-(bio) energetics of purple bacteria, as stated by Alex Borisov. We are highly grateful to Andrei B. Rubin for his reminiscence of the early days of Borisov’s beginning career.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Govindjee.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Although Govindjee continues to publish under one name, his formal name since 2019 is “Govindjee Govindjee”

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govindjee, Razjivin, A.P. & Kozlovsky, V.S. Unique features of the ‘photo-energetics’ of purple bacteria: a critical survey by the late Aleksandr Yuryevich Borisov (1930–2019). Photosynth Res 146, 17–24 (2020). https://doi.org/10.1007/s11120-019-00683-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00683-0

Keywords

Navigation