Skip to main content
Log in

Critical review: incorporating the arrangement of mitochondria and chloroplasts into models of photosynthesis and carbon isotope discrimination

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The arrangement of mitochondria and chloroplasts, together with the relative resistances of cell wall and chloroplast, determine the path of diffusion out of the leaf for (photo)respired CO2. Traditional photosynthesis models have assumed a tight arrangement of chloroplasts packed together against the cell wall with mitochondria located behind the chloroplasts, deep inside the cytosol. Accordingly, all (photo)respired CO2 must cross the chloroplast before diffusing out of the leaf. Different arrangements have recently been considered, where all or part of the (photo)respired CO2 diffuses through the cytosol without ever entering the chloroplast. Assumptions about the path for the (photo)respiratory flux are particularly relevant for the calculation of mesophyll conductance (gm). If (photo)respired CO2 can diffuse elsewhere besides the chloroplast, apparent gm is no longer a mere physical resistance but a flux-weighted variable sensitive to the ratio of (photo)respiration to net CO2 assimilation. We discuss existing photosynthesis models in conjunction with their treatment of the (photo)respiratory flux and present new equations applicable to the generalized case where (photo)respired CO2 can diffuse both into the chloroplast and through the cytosol. Additionally, we present a new generalized Δ13C model that incorporates this dual diffusion pathway. We assess how assumptions about the fate of (photo)respired CO2 affect the interpretation of photosynthetic data and the challenges it poses for the application of different models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Badger MR, Andrews TJ (1974) Effects of CO2, O2 and temperature on a high-affinity form of ribulose diphosphate carboxylase-oxygenase from spinach. Biochem Biophys Res Commun 60:204–210

    Article  CAS  PubMed  Google Scholar 

  • Badger MR, Collatz GJ (1977) Studies on the kinetic mechanism of ribulose-1,5-bisphosphate carboxylase and oxygenase reactions, with particular reference to the effect of temperature on kinetic parameters. Carnegie Inst Wash Year Book 76:355–361

    Google Scholar 

  • Badger MR, Price GD (1994) The role of carbonic anhydrase in photosynthesis. Annu Rev Plant Physiol Plant Molec Biol 45:369–392

    Article  CAS  Google Scholar 

  • Bagley J, Rosenthal DM, Ruiz-Vera UM, Siebers MH, Kumar P, Ort DR, Bernacchi CJ (2015) The influence of photosynthetic acclimation to rising CO2 and warmer temperatures on leaf and canopy photosynthesis models. Global Biogeochem Cycles 29(29):194–206

    Article  CAS  Google Scholar 

  • Barbour MM, Evans JR, Simonin KA, von Caemmerer S (2016) Online CO2 and H2O oxygen isotope fractionation allows estimation of mesophyll conductance in C4 plants, and reveals that mesophyll conductance decreases as leaves age in both C4 and C3 plants. New Phytol 210(3):875–889

    Article  CAS  PubMed  Google Scholar 

  • Berghuijs HNC, Yin X, Ho QT, van der Putten PEL, Verboven P, Retta MA, Nicolaï BM, Struik PC (2015) Modeling the relationship between CO2 assimilation and leaf anatomical properties in tomato leaves. Plant Sci 238:297–311

    Article  CAS  PubMed  Google Scholar 

  • Berghuijs H, Yin NC, Ho X, Tri Q, Driever SM, Retta MA, Nicolaï BM, Struika PC (2016) Mesophyll conductance and reaction-diffusion models for CO2 transport in C3 leaves; needs, opportunities and challenges. Plant Sci 252:62–75

    Article  CAS  PubMed  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel AR, Portis JR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24(24):253–259

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Portis AR, Nakano H, von Caemmerer S, Long SP (2002) Temperature response of mesophyll conductance. Implications for the determination of Rubisco enzyme kinetics and for limitations to photosynthesis in vivo. Plant Physiol 130(4):1992–1998

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bernacchi CJ, Pimentel C, Long SP (2003) In vivo temperature response functions of parameters required to model RuBP-limited photosynthesis. Plant Cell Environ 26:1419–1430

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Rosenthal DM, Pimentel C, Long SP, Farquhar GD (2009) Modelling the temperature dependence of C3 photosynthesis. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 231–246

    Chapter  Google Scholar 

  • Bernacchi CJ, Bagley JE, Serbin SP, Ruiz-Vera UM, Rosenthal DM, Vanloocke A (2013) Modelling C3 photosynthesis from the chloroplast to the ecosystem. Plant Cell Environ 36:1641–1657

    Article  CAS  PubMed  Google Scholar 

  • Berry JA, Farquhar GD (1978) The CO2 concentrating function of C4 photosynthesis: a biochemical model. In: Hall D, Coombs J, Goodwin T (eds) Proceedings of the 4th international congrss on photosynthesis, The Biochemical Society, London, pp 119–131

  • Björkman O (1968) Carboxydismutase activity in shade and sun adapted species of higher plants. Physiol Plant 21:1–10

    Article  Google Scholar 

  • Björkman O, Holmgren P (1963) Adaptability of the photosynthetic apparatus to light intensity in ecotypes from exposed and shaded habitats. Physiol Plant 16:889–914

    Article  Google Scholar 

  • Bowes G, Ogren WL, Hageman RH (1971) Phosphoglycolate production catalysed by ribulose diphosphate carboxylase. Biochem Bioph Res Co 45:71116–71122

    Article  Google Scholar 

  • Boyd RA, Gandin A, Cousins AB (2015) Temperature responses of C4 photosynthesis: biochemical analysis of Rubisco, Phosphoenolpyruvate carboxylase, and Carbonic anhydrase in Setaria viridis. Plant Physiol 169:1850–1861

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burnell JN, Hatch MD (1988) Low bundle sheath carbonic anhydrase is apparently essential for effective C4 pathway operation. Plant Physiol 86:1252–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Busch FA, Sage RF (2017) The sensitivity of photosynthesis to O2 and CO2 concentration identifies strong Rubisco control above the thermal optimum. New Phytol 213:1036–1051

    Article  CAS  PubMed  Google Scholar 

  • Busch FA, Sage TL, Cousins AB, Sage RF (2013) C3 plants enhance rates of photosynthesis by reassimilating photorespired and respired CO2. Plant Cell Environ 36:200–212

    Article  CAS  PubMed  Google Scholar 

  • Busch FA, Sage RF, Farquhar GD (2018) Plants increase CO2 uptake by assimilating nitrogen via the photorespiratory pathway. Nat Plants 4:46–54

    Article  CAS  PubMed  Google Scholar 

  • Cano FJ, López R, Warren CR (2014) Implications of the mesophyll conductance to CO2 for photosynthesis and water-use efficiency during long-term water stress and recovery in two contrasting Eucalyptus species. Plant Cell Environ 37:2470–2490

    Article  CAS  PubMed  Google Scholar 

  • Cernusak LA, Ubierna N, Winter K, Holtum JAM, Marshall JD, Farquhar GD (2013) Environmental and physiological determinants of carbon isotope discrimination in terrestrial plants. New Phytol 200:950–965

    Article  CAS  PubMed  Google Scholar 

  • Collatz GJ, Berry JA, Farquhar GD, Pierce J (1990) The relationship between the rubisco reaction mechanism and models of photosynthesis. Plant Cell Environ 13:219–225

    Article  CAS  Google Scholar 

  • Collatz GJ, Ball JT, Grivet C, Berry JA (1991) Physiological and environmental-regulation of stomatal conductance, photosynthesis and transpiration – a model that includes a laminar boundary-layer. Agric For Meteorol 54:107–136

    Article  Google Scholar 

  • Collatz GJ, Ribas-Carbó M, Berry JA (1992) Coupled photosynthesis-stomatal model for leaves of C4 plants. Aust J Plant Physiol 19:519–538

    Google Scholar 

  • Cramer W, Bondeau A, Woodward FI, Prentice C, Betts RA, Brovkin V, Cox PM, Fisher V, Foley JA, Friend AD, Kucharik C, Lomas MR, Ramankutty N, Sitch S, Smith B, White A, Young-Molling C (2001) Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models. Global Change Biol 7:357–373

    Article  Google Scholar 

  • DiMario RJ, Quebedeaux JC, Longstreth DJ, Dassanayake M, Hartman MM, Moroney JV (2016) The cytoplasmic carbonic anhydrases βCA2 and βCA4 are required for optimal plant growth at low CO2. Plant Physiol 171:280–293

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douthe C, Dreyer E, Brendel O, Warren CR (2012) Is mesophyll conductance to CO2 in leaves of three Eucalyptus species sensitive to short-term changes of irradiance under ambient as well as low O2? Funct Plant Biol 38:434–447

    Google Scholar 

  • Drewry DT, Kumar P, Long S, Bernacchi C, Liang XZ, Sivapalan M (2010) Ecohydrological responses of dense canopies to environmental variability: 1. Interplay between vertical structure and photosynthetic pathway. J Geophys Res 115:G04022

    Google Scholar 

  • Ellsworth DS, Crous KY, Lambers H, Cooke J (2015) Phosphorus recycling in photorespiration maintains high photosynthetic capacity in woody species. Plant Cell Environ 38:1142–1156

    Article  CAS  PubMed  Google Scholar 

  • Ethier GJ, Livingston NJ (2004) On the need to incorporate sensitivity to CO2 transfer conductance into the Farquhar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ 27(2):137–153

    Article  CAS  Google Scholar 

  • Evans JR, von Caemmerer S (1996) Carbon dioxide diffusion inside leaves. Plant Physiol 110(2):339–346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Evans JR, von Caemmerer S (2013) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ 36:745–756

    Article  CAS  PubMed  Google Scholar 

  • Evans JR, Sharkey TD, Berry JA, Farquhar GD (1986) Carbon isotope discrimination measured concurrently with gas-exchange to investigate CO2 diffusion in leaves of higher-plants. Aust J Plant Physiol 13(2):281–292

    CAS  Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21(4):475–495

    CAS  Google Scholar 

  • Evans JR, Kaldenhoff R, Genty B, Terashima I (2009) Resistances along the CO2 diffusion pathway inside leaves. J Exp Bot 60(8):2235–2248

    Article  CAS  PubMed  Google Scholar 

  • Everson RG (1970) Carbonic anhydrase and CO2 fixation in intact chloroplasts. Phytochemistry 9:25–32

    Article  CAS  Google Scholar 

  • Fabre N, Reiter IM, Becuwe-Linka N, Genty B, Rumeau D (2007) Characterization and expression analysis of genes encoding alpha and beta carbonic anhydrases in Arabidopsis. Plant Cell Environ 30:617–629

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD (1979) Models describing the kinetics of ribulose bisphosphate carboxylase-oxygenase. Arch Biochem Biophys 193:456–468

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD (1983) On the nature of carbon isotope discrimination in C4 species. Aust J Plant Physiol 10(2):205–226

    CAS  Google Scholar 

  • Farquhar GD, Busch FA (2017) Changes in the chloroplastic CO2 concentration explain much of the observed Kok effect: a model. New Phytol 214:570–584

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Cernusak LA (2012) Ternary effects on the gas exchange of isotopologues of carbon dioxide. Plant Cell Environ 35(7):1221–1231

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, Lloyd J (1993) Carbon and oxygen isotope effects in the exchange of carbon dioxide between terrestrial plants and the atmosphere. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon-water relations. Academic Press, San Diego, pp 47–70

    Chapter  Google Scholar 

  • Farquhar G, von Caemmerer S (1982) Modelling of photosynthetic responses to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Physiological Plant ecology II. Encyclopedia of plant physiology, new series, vol 12B. Springer-Verlag, Heidelberg, pp 550–587

    Google Scholar 

  • Farquhar GD, Wong S-C (1984) An empirical model of stomatal conductance. Aust J Plant Physiol 11:191–210

    CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical-model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149(1):78–90

    Article  CAS  PubMed  Google Scholar 

  • Farquhar GD, O’Leary MH, Berry JA (1982) On the relationship between carbon isotope discrimination and the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol 9(2):121–137

    CAS  Google Scholar 

  • Flexas J, Díaz-Espejo A, Galmés J, Kaldenhoff R, Medrano H, Ribas-Carbó M (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30(10):1284–1298

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31(5):602–621

    Article  CAS  PubMed  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets Ü, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:70–84

    Article  CAS  PubMed  Google Scholar 

  • Gaastra P (1959) Photosynthesis of crop plants as influenced by light, carbon dioxide, temperature and stomatal diffusion resistance. Meded Landbouwhogeschool Wageningen 59:1–68

    Google Scholar 

  • Gauhl E, Björkman O (1969) Simultaneous measurements on the effect of oxygen concentration on water vapor and carbon dioxide exchange. Planta 88:187–191

    Article  CAS  PubMed  Google Scholar 

  • Genty B, Meyer S, Piel C, Badeck F, Liozon R (1998) CO2 diffusion inside leaf mesophyll of ligneous plants. In: Garab G (ed) Photosynthesis: mechanisms and effects. Kluwer Academic, Dordrecht, pp 3961–3966

    Chapter  Google Scholar 

  • Ghannam AF, Tsen W, Rowlett RS (1986) Activation parameters for the carbonic anhydrase II-catalyzed hydration of CO2. J Biol Chem 261:1164–1169

    CAS  PubMed  Google Scholar 

  • Gillon JS, Griffiths H (1997) The influence of (photo)respiration on carbon isotope discrimination in plants. Plant Cell Environ 20(10):1217–1230

    Article  Google Scholar 

  • Gillon JS, Yakir D (2000a) Internal conductance to CO2 diffusion and C18OO discrimination in C3 leaves. Plant Physiol 123(1):201–213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillon JS, Yakir D (2000b) Naturally low carbonic anhydrase activity in C4 and C3 plants limits discrimination against C18OO during photosynthesis. Plant Cell Environ 23:903–915

    Article  CAS  Google Scholar 

  • Gu L, Sun Y (2014) Artefactual responses of mesophyll conductance to CO2 and irradiance estimated with the variable J and online isotope discrimination methods. Plant Cell Environ 37:1231–1249

    Article  CAS  PubMed  Google Scholar 

  • Gu L, Pallard SG, Tu K, Law BE, Wullschleger SD (2010) Reliable estimation of biochemical parameters from C3 leaf photosynthesis-intercellular carbon dioxide response curves. Plant Cell Environ 33:1852–1874

    Article  CAS  PubMed  Google Scholar 

  • Hall AE, Björkman O (1975) A model of leaf photosynthesis and respiration. In: Gates D, Schmerl R (eds) Perspectives of biophysical ecology, ecological Studies, vol 12. Springer, Berlin, pp 55–72

    Chapter  Google Scholar 

  • Harley PC, Sharkey TD (1991) An improved model of C3 photosynthesis at high CO2: reversed O2 sensitivity explained by lack of glycerate reentry into the chloroplast. Photosynth Res 27:169–178

    CAS  PubMed  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992a) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by analysis of the response of photosynthesis to CO2. Plant Physiol 98(4):1429–1436

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harley PC, Thomas RB, Reynolds JF, Strain BR (1992b) Modelling photosynthesis of cotton grown in elevated CO2. Plant Cell Environ 15:271–282

    Article  CAS  Google Scholar 

  • Hatakeyama Y, Ueno O (2016) Intracellular position of mitochondria and chloroplasts in bundle sheath and mesophyll cells of C3 grasses in relation to photorespiratory CO2 loss. Plant Prod Sci 19:540–551

    Article  CAS  Google Scholar 

  • Holloway-Phillips M, Cernusak LA, Barbour MM, Song X, Cheesman A, Munksgaard N, Stuart-Williams H, Farquhar GD (2016) Leaf vein fraction influences the Péclet effect and 18O enrichment in leaf water. Plant Cell Environ 39:2414–2427

    Article  CAS  PubMed  Google Scholar 

  • Huzisige H, Ke B (1993) Dynamics of the history of photosynthesis research. Photosynth Res 38:185–209

    Article  CAS  PubMed  Google Scholar 

  • Jordan DB, Ogren WL (1984) The CO2/O2 specificity of ribulose 1,5-bisphosphate carboxylase/oxygenase: dependence on ribulosebisphosphate concentration, pH and temperature. Planta 161:308–313

    Article  CAS  PubMed  Google Scholar 

  • June T, Evans JR, Farquhar GD (2004) A simple new equation for the reversible temperature dependence of photosynthetic electron transport: a study on soybean leaf. Funct Plant Biol 31:275–283

    Article  CAS  PubMed  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant Cell Environ 30:1176–1190

    Article  CAS  PubMed  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch HJ, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peter-Hänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nat Biotechnol 25:593–599

    Article  CAS  PubMed  Google Scholar 

  • Laing WA, Ogren WL, Hageman R (1974) Regulation of soybean net photosynthetic CO2 fixation by the interaction of CO2, O2 and ribulose-1,5 diphosphate carboxylase. Plant Physiol 54:678–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laisk A (1977) Kinetics of photosynthesis and photorespiration in C3 Plants. Nauka, Moscow, Russia

    Google Scholar 

  • Lanigan GJ, Betson N, Griffiths H, Seibt U (2008) Carbon isotope fractionation during photorespiration and carboxylation in Senecio. Plant Physiol 148(4):2013–2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leuning R (1990) Modelling stomatal behaviour and photosynthesis in Eucalyptus grandis. Aust J Plant Physiol 17:159–175

    Google Scholar 

  • Leuning R (2002) Temperature dependence of two parameters in a photosynthesis model. Plant Cell Environ 25:1205–1210

    Article  CAS  Google Scholar 

  • Lloyd J, Grace J, Miranda AC, Meir P, Wong SC, Miranda HS, Wright IR, Gash JHC, Mcintyre J (1995) A simple calibrated model of Amazon rainforest productivity based on leaf biochemical properties. Plant Cell Environ 18:1129–1145

    Article  Google Scholar 

  • Lombardozzi DL (2018) Triose phosphate limitation in photosynthesis models reduces leaf photosynthesis and global terrestrial carbon storage. Environ Res Lett 13:074025

    Article  CAS  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54(392):2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Loreto F, Harley PC, Dimarco G, Sharkey TD (1992) Estimation of mesophyll conductance to CO2 flux by three different methods. Plant Physiol 98(4):1437–1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Loucos KE, Simonin KA, Barbour MM (2017) Leaf hydraulic conductance and mesophyll conductance are not closely related within a single species. Plant Cell Environ 40:203–215

    Article  CAS  PubMed  Google Scholar 

  • McMurtrie RE, Wang YP (1993) Mathematical models of the photosynthetic response of tree stands to rising CO2 concentrations and temperature. Plant Cell Environ 16:1–13

    Article  CAS  Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem demography model version 2∑. J Geophys Res 114,:G01002

    Article  Google Scholar 

  • Niemietz CM, Tyerman SD (1997) Characterization of water channels in wheat root membrane vesicles. Plant Physiol 115:561–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogée J, Wingate L, Genty B (2018) Mesophyll conductance from C18OO discrimination. Plant Physiol DOI. https://doi.org/10.1104/pp.17.01031

    Article  Google Scholar 

  • Parkhurst DF, Mott KA (1990) Intercellular diffusion limits to CO2 uptake in leaves: studies in air and helox. Plant Physiol 94:1024–1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peguero-Pina JJ, Flexas J, Galmés J, Niinemets U, Sancho-Knapik D, Barredo G, Villarroya D, Gil-Pelegrín E (2012) Leaf anatomical properties in relation to differences in mesophyll conductance to CO2 and photosynthesis in two related Mediterranean Abies species. Plant Cell Environ 35:2121–2129

    Article  CAS  PubMed  Google Scholar 

  • Peisker M (1974) A model describing the influence of oxygen on photosynthetic carboxylation. Photosynthetica 8:47–50

    CAS  Google Scholar 

  • Peisker M, Apel H (2001) Inhibition by light of CO2 evolution from dark respiration: comparison of two gas exchange methods. Photosynth Res 70:291–298

    Article  CAS  PubMed  Google Scholar 

  • Penman HL, Schofield RK (1951) Some physical aspects of assimilation and transpiration. Symp Soc Exp Biol 5:115–129

    Google Scholar 

  • Pitman AJ (2003) The evolution of, and revolution in, land surface schemes designed for climate models. Int J Climatol 23:479–510

    Article  Google Scholar 

  • Pons TL, Flexas J, von Caemmerer S, Evans JR, Genty B, Ribas-Carbó M, Brugnoli E (2009) Estimating mesophyll conductance to CO2: methodology, potential errors, and recommendations. J Exp Bot 60(8):2217–2234

    Article  CAS  PubMed  Google Scholar 

  • Price GD, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    Article  CAS  PubMed  Google Scholar 

  • Rogers A, Medlyn BE, Dukes JS (2014) Improving representation of photosynthesis in earth system models. New Phytol 204:12–14

    Article  PubMed  Google Scholar 

  • Rooney MA (1988) Short-term carbon isotope fractionation by plants. PhD thesis, University of Wisconsin, Madison, WI, USA

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Sage TL, Sage RF (2009) The functional anatomy of rice leaves: implications for refixation of photorespiratory CO2 and efforts to engineer C4 photosynthesis into rice. Plant Cell Physiol 50:756–772

    Article  CAS  PubMed  Google Scholar 

  • Sanyal G, Maren TH (1981) Thermodynamics of carbonic anhydrase catalysis: a comparison between human isoenzymes B and C. J Biol Chem 256:608–612

    CAS  PubMed  Google Scholar 

  • Sellers PJ, Randall DA, Collatz GJ, Berry JA, Field CB, Dazlich DA, Zhang C, Collelo GD, Bounoua L (1996) A revised land surface parameterization (SiB2) for atmospheric GCMs. Part 1: model formulation. J Clim 9:676–705

    Article  Google Scholar 

  • Sharkey TD (1985) Photosynthesis in intact leaves of C3 plants: physics, physiology and rate limitations. Bot Rev 51:53–105

    Article  Google Scholar 

  • Sharkey TD, Bernacchi CJ, Farquhar GD, Singsaas EL (2007) Fitting photosynthetic carbon dioxide response curves for C3 leaves. Plant Cell Environ 30(9):1035–1040

    Article  CAS  PubMed  Google Scholar 

  • Song X, Loucos KE, Simonin KA, Farquhar GD, Barbour MM (2014) Measurements of transpiration isotopologues and leaf water to assess enrichment models in cotton. New Phytol 206:637–646

    Article  CAS  Google Scholar 

  • Stryer L (1988) Biochemistry. W. H. Freeman, New York

    Google Scholar 

  • Sun Y, G L, Norby EDR, Pallardy RJ, Hoffman SG FM (2014) Impact of mesophyll diffusion on estimated global land CO2 fertilization. Proc Natl Acad Sci USA 111:15774–15779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Syvertsen JP, Lloyd J, McConchie C, Kriedemann PE, Farquhar GD (1995) On the relationship between leaf anatomy and CO2 diffusion through the mesophyll of hypostomatous leaves. Plant Cell Environ 18(2):149–157

    Article  Google Scholar 

  • Tazoe Y, von Caemmerer S, Estavillo GM, Evans JR (2011) Using tunable diode laser spectroscopy to measure carbon isotope discrimination and mesophyll conductance to CO2 diffusion dynamically at different CO2 concentrations. Plant Cell Environ 34:580–591

    Article  PubMed  Google Scholar 

  • Tcherkez G (2006) How large is the carbon isotope fractionation of the photorespiratory enzyme glycine decarboxylase? Funct Plant Biol 33(10):911–920

    Article  CAS  PubMed  Google Scholar 

  • Tcherkez G, Cornic G, Bligny R, Gout E, Ghashghaie J (2005) In vivo respiratory metabolism of illuminated leaves. Plant Physiol 138(3):1596–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tcherkez G, Boex-Fontvieille E, Mahé A, Hodges M (2012) Respiratory carbon fluxes in leaves. Curr Opin Plant Biol 15:308–314

    Article  CAS  PubMed  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Zhu XG (2011) The mechanistic basis of internal conductance: a theoretical analysis of mesophyll cell photosynthesis and CO2 diffusion. Plant Physiol 156:90–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited. Theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  CAS  PubMed  Google Scholar 

  • Tholen D, Ethier G, Genty B (2014) Mesophyll conductance with a twist. Plant Cell Environ 37:2456–2458

    Article  CAS  PubMed  Google Scholar 

  • Tomás M, Flexas J, Copolovici L, Galmés J, Hallik L, Medrano HL, Ribas-Carbó M, Tosens T, Vislap V, Niinemets U (2013) Importance of leaf anatomy in determining mesophyll diffusion conductance to CO2 across species: quantitative limitations and scaling up by models. J Exp Bot 64(8):2269–2281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tosens T, Niinemets U, Vislap V, Eichelmann H, Castro Díez P (2012) Developmental changes in mesophyll diffusion conductance and photosynthetic capacity under different light and water availabilities in Populus tremula: how structure constrains function. Plant Cell Environ 35:839–856

    Article  CAS  PubMed  Google Scholar 

  • Ubierna N, Farquhar GD (2014) Advances in measurements and models of photosynthetic carbon isotope discrimination in C3 plants. Plant Cell Environ 37:1494–1498

    Article  CAS  PubMed  Google Scholar 

  • Ubierna N, Marshall JD (2011) Estimation of canopy average mesophyll conductance using δ13C of phloem contents. Plant Cell Environ 34:1521–1535

    Article  CAS  PubMed  Google Scholar 

  • Ubierna N, Gandin A, Boyd RA, Cousins AB (2017) Temperature response of mesophyll conductance in three C4 species calculated with two methods: 18O discrimination and in-vitro V pmax. Corrigendum-New Phytol 214:66–80. https://doi.org/10.1111/nph.14922

    Article  CAS  Google Scholar 

  • Ubierna N, Holloway-Phillips MM, Farquhar GD (2018) Using stable carbon isotopes to study C3 and C4 photosynthesis: models and calculations. In: Covshoff S (ed) Photosynthesis. Methods in molecular biology, vol 1770. Humana Press, New York, pp 155–196

    Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • von Caemmerer S (1989) A model of photosynthetic CO2 assimilation and carbon isotope discrimination in leaves of certain C3-C4 intermediate species. Planta 178:463–474

    Article  Google Scholar 

  • von Caemmerer S (1992) Carbon isotope discrimination in C3-C4 intermediates. Plant Cell Environ 15:1063–1072

    Article  Google Scholar 

  • von Caemmerer S (2000) Biochemical models of leaf photosynthesis. CSIRO publishing, Collingwood

    Book  Google Scholar 

  • von Caemmerer S (2003) C4 photosynthesis in a single C3 cell is theoretically inefficient but may ameliorate internal CO2 diffusion limitations of C3 leaves. Plant Cell Environ 26:1191–1197

    Article  Google Scholar 

  • von Caemmerer S (2013) Steady-state models of photosynthesis. Plant Cell Environ 36:1617–1630

    Article  CAS  Google Scholar 

  • von Caemmerer S, Evans JR (1991) Determination of the average partial-pressure of CO2 in chloroplasts from leaves of several C3 plants. Aust J Plant Physiol 18(3):287–305

    Google Scholar 

  • von Caemmerer S, Evans JR (2015) Temperature responses of mesophyll conductance differ greatly between species. Plant Cell Environ 38:629–637

    Article  CAS  Google Scholar 

  • von Caemmerer S, Furbank RT (1999) Modeling of C4 photosynthesis. In: Monson RFSR (ed) C4 Plant biology. Academic Press, San Diego, pp 169–207

    Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  Google Scholar 

  • Walker B, Ariza LS, Kaines S, Badger MR, Cousins AB (2013) Temperature response of in vivo Rubisco kinetics and mesophyll conductance in Arabidopsis thaliana: comparisons to Nicotiana tabacum. Plant Cell Environ 36:2108–2119

    Article  CAS  PubMed  Google Scholar 

  • Wareing PF, Khalifa MM, Treharne KJ (1968) Rate-limiting processes in photosynthesis at saturating light intensities. Nature 220:453–457

    Article  CAS  PubMed  Google Scholar 

  • Warren CR, Ethier GJ, Livingston NJ, Grant NJ, Turpin DH, Harrison DL, Black TA (2003) Transfer conductance in second growth Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) canopies. Plant Cell Environ 26(8):1215–1227

    Article  CAS  Google Scholar 

  • Wingate L, Seibt U, Moncrieff JB, Jarvis PG, Lloyd J (2007) Variations in 13C discrimination during CO2 exchange by Picea sitchensis branches in the field. Plant Cell Environ 30(5):600–616

    Article  CAS  PubMed  Google Scholar 

  • Wittig VE, Bernacchi CJ, Zhu XG, Calfapietra C, Ceulemans R, DeAngelis P, Gielen B, Miglietta F, Morgan PB, Long SP (2005) Gross primary production is stimulated for three Populus species grown under free-air CO2 enrichment from planting through canopy closure. Global Change Biol 11:644–656

    Article  Google Scholar 

  • Xiong D, Liu X, Liu L, Douthe C, LI Y, Peng S, Huang J (2015) Rapid responses of mesophyll conductance to changes of CO2 concentration, temperature and irradiance are affected by N supplements in rice. Plant Cell Environ 38:2541–2550

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC (2009) Theoretical reconsiderations when estimating the mesophyll conductance to CO2 diffusion in leaves of C3 plants by analysis of combined gas exchange and chlorophyll fluorescence measurements. Plant Cell Environ 32:1513–1524 (with corrigendum in 1533:1595)

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Struik PC (2017) Simple generalisation of a mesophyll resistance model for various intracellular arrangements of chloroplasts and mitochondria in C3 leaves. Photosynth Res 132:211–220

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yin X, van Oijen M, Schapendonk AHCM (2004) Extension of a biochemical model for the generalized stoichiometry of electron transport limited C3 photosynthesis. Plant Cell Environ 27:1211–1222

    Article  CAS  Google Scholar 

  • Yin X, Harbinson J, Struik PC (2006) Mathematical review of literature to assess alternative electron transports and interphotosystem excitation partitioning of steady-state C3 photosynthesis under limiting light. Plant Cell Environ 29:1771–1782 (with corrigendum in Plant, Cell and Environment 1729: 2252)

    Article  CAS  PubMed  Google Scholar 

  • Yin X, Harbinson J, Struik PC (2009a) A model of the generalised stoichiometry of electron transport limited C3 photosynthesis: development and application. In: Laisk A, Nedbal L, Govindjee (eds) Photosynthesis in silico. Understanding complexity from molecules to ecosystems. Springer, Dordrecht, pp 247–273

    Chapter  Google Scholar 

  • Yin X, Struik PC, Romero P, Harbinson J, Evers JB, Van Der Putten PEL, Vos J (2009b) Using combined measurements of gas exchange and chlorophyll fluorescence to estimate parameters of a biochemical C3 photosynthesis model: a critical appraisal and a new integrated approach applied to leaves in a wheat (Triticum aestivum) canopy. Plant Cell Environ 32:448–464

    Article  CAS  PubMed  Google Scholar 

  • Zhu XG, Portis AR, Long SP (2004) Would transformation of C3 crop plants with foreign Rubisco increase productivity? A computational analysis extrapolating from kinetic properties to canopy photosynthesis. Plant Cell Environ 27:155–165

    Article  CAS  Google Scholar 

  • Zhu XG, Long SP, Ort DR (2008) What is the maximum efficiency with which photosynthesis can convert solar energy into biomass? Curr Opin Biotech 19:153–159

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

N.U. received no external funding and conducted the work on her own time. L.A.C. was supported by the Australian Research Council (Grant no. ARC DP150100588), M.H.P., F.A.B., and G.D.F. by the Australian Government through the Australian Research Council Centre of Excellence for Translational Photosynthesis, and A.B.C. by the Office of Basic Energy Sciences, Department of Energy (Grant No. DE-FG02-09ER16062).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nerea Ubierna.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 124 KB)

Appendices

Appendix 1: generalized C3 photosynthesis model for the dual diffusion pathway

Quadratic equations to calculate C c in function of C m for 0 < γ ≤ 1

Photorespiration rate can be calculated (Farquhar et al. 1980):

$$F=\frac{{{\Gamma ^*}}}{{{C_{\text{c}}}}}{V_{\text{c}}},$$
(33)

where Γ* (Pa) is the CO2 compensation point in the absence of mitochondrial respiration, Cc is the pCO2 in the chloroplast (Pa) and Vc (µmol CO2 m−2 s−1), is the rate of carboxylation by rubisco calculated with Eq. 2. Substituting Vc in Eq. 2 for \(\frac{{F{C_{\text{c}}}}}{{{\Gamma ^*}}}\) (solved from Eq. 33) results in the following expressions for F:

$$F=\left\{ {\begin{array}{*{20}{l}} {({\text{a}})~F=\frac{{{\Gamma ^*}{V_{{\text{cmax}}}}}}{{{C_{\text{c}}}+{K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right)}},~~{\text{RuBP-saturated}}} \\ {({\text{b}})~F=\frac{{{\Gamma ^*}J}}{{4{C_{\text{c}}}+8{\Gamma ^*}}},~~{\text{electron~transport~limited}}} \end{array}} \right.,$$
(34)

where Vcmax is the maximal rubisco carboxylation rate (µmol CO2 m−2 s−1), Kc and Ko (Pa) are the Michaelis–Menten constants of rubisco for CO2 and O2, respectively, and J (µmol electrons m−2 s−1) is the potential electron transport rate.

From Eq. 12, the photosynthetic rate, A (µmol CO2 m−2 s−1) can be solved as:

$$A=\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{r_{\text{c}}}}} - \gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)$$
(35)

where Cm (Pa) is mesophyll pCO2, rc is chloroplast resistance (m2 s Pa µmol−1) and \({\mathcal{R}_{\text{d}}}\) (µmol CO2 m−2 s−1) is the mitochondrial respiration in the light.

Substituting F in Eq. 35 for its calculation given in Eq. 34, and combining the resulting formulations with the FvCB calculation for the RuBP-saturated (Ac) and electron transport limited (Aj) photosynthetic rates presented in Eqs. 4 and 5, results in the following quadratic expressions to calculate Cc for a given Cm for any value of 0 < γ ≤ 1:

RuBP-saturated

$$C_{{\text{c}}}^{2}+{C_{\text{c}}}\left( { - {C_{\text{m}}}+{r_{\text{c}}}{V_{{\text{cmax}}}}+{K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right) - {\mathcal{R}_{\text{d}}}{r_{\text{c}}}\left( {1 - \gamma } \right)} \right) - {C_{\text{m}}}{K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right) - {K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right){\mathcal{R}_{\text{d}}}{r_{\text{c}}}\left( {1 - \gamma } \right) - {r_{\text{c}}}{V_{{\text{cmax}}}}{{{\Gamma}}^*}\left( {1 - \gamma } \right)=0$$
(36)

RuBP-limited

$$C_{{\text{c}}}^{2}+{C_{\text{c}}}\left( { - {C_{\text{m}}}+\frac{{{r_{\text{c}}}J}}{4}+2{\Gamma ^*} - {\mathcal{R}_{\text{d}}}{r_{\text{c}}}\left( {1 - \gamma } \right)} \right) - {C_{\text{m}}}2{\Gamma ^*} - 2{\mathcal{R}_{\text{d}}}{r_{\text{c}}}{\Gamma ^*}\left( {1 - \gamma } \right) - \frac{{{\Gamma ^*}{r_{\text{c}}}J\left( {1 - \gamma } \right)}}{4}=0$$
(37)

When γ = 1, Eqs. 36 and 37 are identical to Eqs. A28 and A29 in von Caemmerer (2013), respectively.

Calculation of Γc, Γ, \(C_{{\text{m}}}^{*}\), and \(C_{{\text{i}}}^{*}\)

\({\Gamma _{\text{c}}}\) (pCO2 in the chloroplast at which A = 0) is obtained from setting A = 0 in Eqs. 4 and 5 and solving for Cc (Eqs. A30 and A32 in von Caemmerer 2013):

$${\Gamma _c}=\left\{ {\begin{array}{*{20}{l}} {({\text{a}})~{\Gamma _{\text{c}}}=\frac{{{\Gamma ^*}+\frac{{{\mathcal{R}_{\text{d}}}}}{{{V_{{\text{cmax}}}}}}{K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right)}}{{1 - ~\frac{{{\mathcal{R}_{\text{d}}}}}{{{V_{{\text{cmax}}}}}}}},~~{\text{RuBP-saturated}}~} \\ {({\text{b}})~{\Gamma _{\text{c}}}=\frac{{{\Gamma ^*}\left( {J+8{\mathcal{R}_{\text{d}}}} \right)}}{{J - 4{\mathcal{R}_{\text{d}}}}},~~{\text{electron~transport~limited}}} \end{array}} \right.$$
(38)

Γ (pCO2 in the leaf intercellular spaces at which A = 0) is calculated by solving for Cm in Eq. 35 setting A = 0 and Cc = Γc, which results in \({C_{\text{m}}}={\Gamma _{\text{c}}}+\gamma {r_{\text{c}}}{\mathcal{R}_{\text{d}}}+\gamma {r_{\text{c}}}F\). In this expression F can be substituted by its calculation given in Eq. 34, which results in:

$$\Gamma =\left\{ {\begin{array}{*{20}{l}} {({\text{a}})~\Gamma ={{{{\Gamma}}}_{\text{c}}}+\gamma {r_{\text{c}}}{\mathcal{R}_{\text{d}}}+\gamma {r_{\text{c}}}\frac{{{\Gamma ^*}{V_{{\text{cmax}}}}}}{{{\Gamma _{\text{c}}}+{K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right)}},~~{\text{RuBP-saturated}}~} \\ {({\text{b}})~\Gamma ={\Gamma _{\text{c}}}+\gamma {r_{\text{c}}}{\mathcal{R}_{\text{d}}}+\gamma {r_{\text{c}}}\frac{{{\Gamma ^*}J}}{{4{\Gamma _{\text{c}}}+8{\Gamma ^*}}},~~{\text{electron~transport~limited}}} \end{array}} \right.$$
(39)

When γ = 1, Eq. 39 is the same as Eqs. A31 and A33 in von Caemmerer (2013), with the exception that there was a typographical error in her Eq. A31 that we have corrected here.

\(C_{{\text{m}}}^{*}\) (pCO2 in the mesophyll cytosol at which \({\text{A=}} - {\mathcal{R}_{\text{d}}}\)) is derived by solving Cm from Eq. 35, assuming that \({\text{A=}} - {\mathcal{R}_{\text{d}}}\) and Cc = Γ*, which results in \(C_{{\text{m}}}^{*}=~{\Gamma ^*}+\gamma {r_{\text{c}}}F+{\mathcal{R}_{\text{d}}}{r_{\text{c}}}\left( {\gamma - 1} \right)\). Then substituting F for its expression given in Eq. 34 results in:

$$C_{\text{m}}^{*}=\left\{ {\begin{array}{*{20}{c}} {({\text{a}})~C_{{\text{m}}}^{*}={\Gamma ^*}+\gamma {r_{\text{c}}}\frac{{{\Gamma ^*}{V_{{\text{cmax}}}}}}{{{\Gamma ^*}+{K_{\text{c}}}\left( {1+\frac{O}{{{K_{\text{o}}}}}} \right)}} - {\mathcal{R}_{\text{d}}}{r_{\text{c}}}\left( {1 - \gamma } \right),~~{\text{RuBP-saturated}}~} \\ {({\text{b}})~C_{{\text{m}}}^{*}={\Gamma ^*}+\gamma {r_{\text{c}}}\frac{J}{{12}} - {\mathcal{R}_{\text{d}}}{r_{\text{c}}}\left( {1 - \gamma } \right),~~{\text{electron~transport~limited}}} \end{array}} \right.$$
(40)

When γ = 1, Eq. 40 is identical to Eqs. A35 and A38 in von Caemmerer (2013).

For γ > 0, \(C_{{\text{i}}}^{*}\) (pCO2 in the leaf intercellular spaces at which \({\text{A=}} - {\mathcal{R}_{\text{d}}}\)) is derived by solving Ci from Eq. 11\(\left( {{C_{\text{i}}}={C_{\text{m}}}+{r_{\text{w}}}A} \right)\), setting \({\text{A=}} - {\mathcal{R}_{\text{d}}}\), and \({C_{\text{m}}}=C_{{\text{m}}}^{*}\):

$$C_{\text{i}}^{*}=C_{\text{m}}^{*} - {\mathcal{R}_{\text{d}}}{r_{\text{w}}},$$
(41)

with different calculations for the RuBP-saturated and electron transport limited cases given by the different expressions for \(C_{{\text{m}}}^{*}\) (Eq. 40). When γ = 1, Eq. 41 is identical to Eqs. A34 and A37 in von Caemmerer (2013).

When γ = 0, \(C_{{\text{i}}}^{*}\) is derived by solving Ci from Eq. 8\(\left( {{C_{\text{i}}}={C_{\text{m}}}+{r_{\text{m}}}A} \right)\), setting \({\text{A=}} - {\mathcal{R}_{\text{d}}}\), and \({C_{\text{m}}}=C_{\text{m}}^{*}={\Gamma ^*}\), which results in:

$$C_{{\text{i}}}^{*}={\Gamma ^*} - {\mathcal{R}_{\text{d}}}{r_{\text{m}}}$$
(42)

Correspondence of our model with Yin and Struik (2017) two-resistance model

For the comparison, we use the most comprehensive case scenario (Case 4, Fig. 1b) in Yin and Struik (2017), where the coverage of chloroplasts is discontinuous and mitochondria are located both in the inner and outer layers of cytosol. In this case, Yin and Struik (2017) stablished the following mass balance equation (Eq. 12 in Yin and Struik 2017) :

$${C_{\text{m}}} - {C_{\text{c}}}={r_{\text{c}}}\left[ {{V_{\text{c}}} - k\lambda ({\mathcal{R}_{\text{d}}}+F)} \right]$$
(43)

Because \({V_{\text{c}}}=A+~{\mathcal{R}_{\text{d}}}+F\), and σ = , Eq. 43 can be re-written as:

$${C_{\text{m}}} - {C_{\text{c}}}={r_{\text{c}}}\left[ {A+~{\mathcal{R}_{\text{d}}}+{F_{\text{c}}} - \sigma \left( {{\mathcal{R}_{\text{d}}}+F} \right)} \right]={r_{\text{c}}}\left[ {A+\left( {{\mathcal{R}_{\text{d}}}+F} \right)\left( {1 - \sigma } \right)} \right],$$
(44)

and solving \({r_{\text{c}}}\) from Eq. 44 results in:

$${r_{\text{c}}}=\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{A+(1 - \sigma )\left( {{\mathcal{R}_{\text{d}}}+F} \right)}}$$
(45)

Equation 45 is identical to Eq. 12 with the equivalence \(\gamma =1 - \sigma\). From Eq. 10\({g_{\text{m}}}\) can be calculated as:

$${g_{\text{m}}}=\frac{1}{{{r_{\text{w}}}+{r_{\text{c}}}\left( {1+\gamma \frac{{{R_{\text{d}}}+F}}{A}} \right)}}$$
(46)

Defining \({r_{\text{w}}}+{r_{\text{c}}}={r_{{\text{m,diff}}}},\)\({r_{\text{c}}}=\omega {r_{{\text{m,diff}}}}\) and \({r_{\text{w}}}=(1 - \omega ){r_{{\text{m,diff}}}}\) (Yin and Struik 2017), Eq. 46 results in Eq. 15, which is identical to Eq. 15 in Yin and Struik (2017) with the equivalence \(\gamma =1 - \sigma\).

Appendix 2: generalized Δ13C model for the dual diffusion pathway

Δ13C model for 0 ≤ γ ≤ 1

Expression for the carbon isotope ratio of assimilation rate \(\left( {{R_{\text{A}}}} \right)\)

From Eq. 11, the rates of assimilation of 12CO2 (A) and 13CO2 (A′) are:

$$A=\frac{{{C_i} - {C_{\text{m}}}}}{{{r_{\text{w}}}}}$$
(47)
$$A^{\prime}=\frac{{{R_{\text{i}}}{C_{\text{i}}} - {R_{\text{m}}}{C_{\text{m}}}}}{{{r_{\text{w}}}{\alpha _{\text{m}}}}}$$
(48)

where \({C_{\text{i}}}\) (Pa) and \({C_{\text{m}}}\) (Pa) are the pCO2 inside the leaf intercellular spaces, and the mesophyll cytosol, respectively. The \({r_{\text{w}}}\) (Pa m2 s µmol−1) is the wall resistance to CO2 diffusion. \({R_{\text{i}}}\) and \({R_{\text{m}}}\) are the C-isotope ratios of CO2 inside the leaf intercellular spaces, and in the mesophyll cytosol, respectively. The \({\alpha _{\text{m}}}=1+{a_{\text{m}}}\), where am (= es + a1 = 1.8‰), is the 12C/13C fractionation associated with dissolution of CO2 (es = 1.1‰) and its subsequent diffusion (a1 = 0.7‰).

The RA is calculated as:

$${R_{\text{A}}}=\frac{{A^{\prime}}}{A}=\frac{{{R_{\text{i}}}{C_{\text{i}}} - {R_{\text{m}}}{C_{\text{m}}}}}{{{\alpha _{\text{m}}}({C_{\text{i}}} - {C_{\text{m}}})}}.$$
(49)

The term \({R_{\text{m}}}{C_{\text{m}}}\) can be solved from Eq. 49 as:

$${R_{\text{m}}}{C_{\text{m}}}={R_{\text{i}}}{C_{\text{i}}} - {R_{\text{A}}}{\alpha _{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right).$$
(50)

The ternary corrected equation relating RA to \({R_{\text{a}}}\) (isotope ratio of the CO2 in the ambient air) and \({R_{\text{i}}}\) is (Eq. 6 in “Appendix 2” section in Farquhar and Cernusak 2012):

$${R_{\text{A}}}=\frac{{{R_{\text{a}}}{C_{\text{a}}} - {R_{\text{i}}}{C_{\text{i}}} - t({R_{\text{a}}}{C_{\text{a}}}+{R_{\text{i}}}{C_{\text{i}}})}}{{{\alpha _{{\text{ac}}}}\left( {{C_{\text{a}}} - {C_{\text{i}}}} \right) - t\left( {{C_{\text{a}}}+{C_{\text{i}}}} \right)}},$$
(51)

where \(C_{\text{a}}\) (Pa) is the pCO2 mole fraction in ambient air, t is the ternary correction factor:

$$t=\frac{{{\alpha _{{\text{ac}}}}E}}{{2{g_{{\text{ac}}}}}},$$
(52)

where E (mol m−2 s−1) is transpiration rate, \({g_{{\text{ac}}}}\) (mol m−2 s−1) is the combined boundary layer and stomatal conductance to CO2, and \({\alpha _{{\text{ac}}}}\) is the fractionation factor for the isotopologues of CO2 diffusing in air, \({\alpha _{{\text{ac}}}}=1+\bar {a}\), where \(\bar {a}\) is the weighted fractionation across the boundary layer and stomata in series:

$$\bar {a}=\frac{{{a_{\text{b}}}\left( {{C_{\text{a}}} - {C_{\text{s}}}} \right)+{a_{\text{s}}}\left( {{C_{\text{s}}} - {C_{\text{i}}}} \right)}}{{{C_{\text{a}}} - {C_{\text{i}}}}},$$
(53)

where Cs (Pa) is the pCO2 at the leaf surface, and ab and as are the 12C/13C fractionations for CO2 diffusion in the boundary layer (2.9‰) and in air (4.4‰), respectively.

Expression for the carbon isotope ratio of CO2 at the sites of carboxylation \(\left( {{R_{\text{c}}}} \right)\)

A relationship for the situation whether CO2 enters the stroma from the front, sides or back of the chloroplasts is presented in Farquhar and Cernusak (2012):

$${R_{\text{c}}}={R_{\text{A}}}\left( {{\alpha _{\text{b}}} - \frac{{{\alpha _{\text{b}}}{\Gamma ^*}f}}{{{\alpha _{\text{f}}}{C_{\text{c}}}}} - \frac{{{\alpha _{\text{b}}}{\mathcal{R}_{\text{d}}}e^{\prime}}}{{{\alpha _{\text{e}}}{V_{\text{c}}}}}} \right)$$
(54)

where \({\alpha _{\text{b}}}=1+{b^{\prime}_3}\), \({\alpha _{\text{f}}}=1+f\), and \({\alpha _{\text{e}}}=1+e^{\prime}\), with \({b^{\prime}_3}\), \(e^{\prime}\) and f (‰) being the 12C/13C fractionations during carboxylation by rubisco, decarboxylation and photorespiration, respectively. The \({{\text{C}}_\text{c}}\) (Pa) is the pCO2 at the sites of carboxylation in the chloroplast, Γ* (Pa) is the CO2 compensation point in absence of mitochondrial respiration, and Vc (µmol m−2 s−1) is the rubisco carboxylation rate.

Write Eq. 12 in ratios

Equation 12 links conditions in the cytosol with those in the chloroplast stroma and its analog for 13CO2 is:

$${R_{\text{m}}}{C_{\text{m}}} - {R_{\text{c}}}{C_{\text{c}}}=\left( {{R_{\text{A}}}A+\gamma \left( {{{\mathcal{R}^{\prime}}_{\text{d}}}+F^{\prime}} \right)} \right) \, {r_{\text{c}}}{\alpha _{\text{c}}},$$
(55)

where \({\alpha _{\text{c}}}=1+{a_{\text{c}}}\) and \({a_{\text{c}}}\) is the 12C/13C fractionation that occurs as CO2 travels from the cytosol to the sites of carboxylation in the chloroplast. We used ac = 1.8‰, and a detailed justification for this value is presented at the end of this subsection. The \({\mathcal{R}^{\prime}_{\text{d}}}=\frac{{{\mathcal{R}_{\text{d}}}{R_{\text{A}}}}}{{{\alpha _{\text{e}}}}}\) and \(F^{\prime}=\frac{{F{R_{\text{A}}}}}{{{\alpha _{\text{f}}}}}\). Because \(\frac{1}{{{\alpha _{\text{x}}}}}=1 - \frac{x}{{{\alpha _{\text{x}}}}}\), then the \({\mathcal{R}^{\prime}_{\text{d}}}\) and \(F^{\prime}\) can be written as:

$${\mathcal{R}^{\prime}_{\text{d}}}={\mathcal{R}_{\text{d}}}{R_{\text{A}}} - \frac{{{\mathcal{R}_{\text{d}}}{R_{\text{A}}}e^{\prime}}}{{{\alpha _{\text{e}}}}}$$
(56)
$$F^{\prime}=F{R_{\text{A}}} - \frac{{F{R_{\text{A}}}f}}{{{\alpha _{\text{f}}}}}.$$
(57)

Using Eqs. 56 and 57, rearranging terms and substituting \({r_{\text{c}}}\) for \(\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{A+\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)}}\) (Eq. 12), the right-hand term of Eq. 55 can be written as:

$$\left( {{R_{\text{A}}}A+\gamma \left( {{{\mathcal{R}^{\prime}}_{\text{d}}}+F^{\prime}} \right)} \right) \, {r_{\text{c}}}{\alpha _{\text{c}}}={R_{\text{A}}}\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right){\alpha _{\text{c}}} - \gamma \frac{{{\alpha _{\text{c}}}\left( {\frac{{e^{\prime}{\mathcal{R}_{\text{d}}}}}{{{\alpha _{\text{e}}}}}+\frac{{fF}}{{{\alpha _{\text{f}}}}}} \right)}}{{A+\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)}}{R_{\text{A}}}\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right)$$
(58)

We define:

$${\gamma _{\text{m}}}=\gamma \frac{{{\alpha _{\text{c}}}\left( {\frac{{e^{\prime}{\mathcal{R}_{\text{d}}}}}{{{\alpha _{\text{e}}}}}+\frac{{fF}}{{{\alpha _{\text{f}}}}}} \right)}}{{A+\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)}}.$$
(59)

In Eq. 59 if F is substituted by \(\frac{{{\Gamma ^*}\left( {A+{\mathcal{R}_{\text{d}}}} \right)}}{{{C_{\text{c}}} - {\Gamma ^*}}}\) results in the expression for \({\gamma _{\text{m}}}\) presented in Eq. 20.

Substituting the right-hand term in Eq. 55 by the right-hand term in Eq. 58 results in:

$${R_{\text{m}}}{C_{\text{m}}} - {R_{\text{c}}}{C_{\text{c}}}={R_{\text{A}}}\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right)\left( {{\alpha _{\text{c}}} - {\gamma _{\text{m}}}} \right).$$
(60)

Operate Eq. 60 to derive an expression for \({R_{\text{i}}}{C_{\text{i}}}\)

In Eq. 60 substitute \({R_{\text{m}}}{C_{\text{m}}}\;{\text{and}}\;{R_{\text{c}}}\) for their calculations given in Eqs. 50 and 54, respectively:

$${R_{\text{i}}}{C_{\text{i}}} - {R_{\text{A}}}{\alpha _{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right) - {R_{\text{A}}}\left( {{\alpha _{\text{b}}} - \frac{{{\alpha _{\text{b}}}{\Gamma ^*}f}}{{{\alpha _{\text{f}}}{C_{\text{c}}}}} - \frac{{{\alpha _{\text{b}}}{\mathcal{R}_{\text{d}}}e^{\prime}}}{{{\alpha _{\text{e}}}{V_{\text{c}}}}}} \right){C_{\text{c}}}={R_{\text{A}}}\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right)\left( {{\alpha _{\text{c}}} - {\gamma _{\text{m}}}} \right),$$
(61)

and solve \({R_{\text{i}}}{C_{\text{i}}}\) from Eq. 61:

$${R_{\text{i}}}{C_{\text{i}}}={R_{\text{A}}}\left[ {{\alpha _{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right)+\left( {{\alpha _{\text{c}}} - {\gamma _{\text{m}}}} \right)\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right)+\left( {{\alpha _{\text{b}}} - \frac{{{\alpha _{\text{b}}}{\Gamma ^*}f}}{{{\alpha _{\text{f}}}{C_{\text{c}}}}} - \frac{{{\alpha _{\text{b}}}{\mathcal{R}_{\text{d}}}e^{\prime}}}{{{\alpha _{\text{e}}}{V_{\text{c}}}}}} \right){C_{\text{c}}}} \right]$$
(62)

Derive an expression for \({{{R_{\text{a}}}} \mathord{\left/ {\vphantom {{{R_{\text{a}}}} {{R_{\text{A}}}}}} \right. \kern-0pt} {{R_{\text{A}}}}}\)

Substituting in Eq. 51, the term \({R_{\text{i}}}{C_{\text{i}}}\) for its calculation in Eq. 62 results in an equation with only two isotope ratios, \({R_{\text{A}}}\) and \({R_{\text{a}}}\) which separate as:

$${R_{\text{A}}}\left\{ {{\alpha _{{\text{ac}}}}\left( {{C_{\text{a}}} - {C_{\text{i}}}} \right) - t\left( {{C_{\text{a}}}+{C_{\text{i}}}} \right)+\left( {1+t} \right)\left[ {{\alpha _{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right)+({\alpha _{\text{c}}} - {\gamma _{\text{m}}})\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right)+{C_{\text{c}}}\left( {{\alpha _{\text{b}}} - \frac{{{\alpha _{\text{b}}}{\Gamma ^*}f}}{{{\alpha _{\text{f}}}{C_{\text{c}}}}} - \frac{{{\alpha _{\text{b}}}{\mathcal{R}_{\text{d}}}e^{\prime}}}{{{\alpha _{\text{e}}}{V_{\text{c}}}}}} \right)} \right]} \right\}={R_{\text{a}}}{C_{\text{a}}}(1 - t).$$
(63)

Equation 63 can be rearranged to give \({{{R_{\text{a}}}} \mathord{\left/ {\vphantom {{{R_{\text{a}}}} {{R_{\text{A}}}}}} \right. \kern-0pt} {{R_{\text{A}}}}}\) as:

$$\frac{{{R_{\text{a}}}}}{{{R_{\text{A}}}}}=\frac{1}{{1 - t}}\frac{{{\alpha _{{\text{ac}}}}\left( {{C_{\text{a}}} - {C_{\text{i}}}} \right)}}{{{C_{\text{a}}}}} - \frac{t}{{1 - t}}\left( {1+\frac{{{C_{\text{i}}}}}{{{C_{\text{a}}}}}} \right)+\frac{{1+t}}{{1 - t}}\frac{{{\alpha _{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right)+({\alpha _{\text{c}}} - {\gamma _{\text{m}}})\left( {{C_{\text{m}}} - {C_{\text{c}}}} \right)+{C_{\text{c}}}\left( {{\alpha _{\text{b}}}~ - ~\frac{{{\alpha _{\text{b}}}{\Gamma ^*}f}}{{{\alpha _{\text{f}}}{C_{\text{c}}}}}~ - ~\frac{{{\alpha _{\text{b}}}{\mathcal{R}_{\text{d}}}e^{\prime}}}{{{\alpha _{\text{e}}}{V_{\text{c}}}}}} \right)}}{{{C_{\text{a}}}}}.$$
(64)

Apply the definition of discrimination

By definition \(\alpha =1+\Delta ~={{{R_{\text{a}}}} \mathord{\left/ {\vphantom {{{R_a}} {{R_A}}}} \right. \kern-0pt} {{R_\text{A}}}}\). Substituting in Eq. 64\({\alpha _{{\text{ac}}}}=1+\bar {a}\), \({\alpha _{\text{m}}}=1+{a_{\text{m}}}\), \({\alpha _{\text{b}}}=1+{b^{\prime}_3}~\) and \({\alpha _{\text{c}}}=1+{a_{\text{c}}}\), and a few lines of rearrangement, yields the formulation for \({\Delta ^{13}}{\text{C}}\) for any value of γ:

$${\Delta ^{13}}{\text{C}}=\frac{{\bar {a}}}{{1 - t}}\frac{{{C_{\text{a}}} - {C_{\text{i}}}}}{{{C_{\text{a}}}}}+\frac{{1+t}}{{1 - t}}\left[ {{a_{\text{m}}}\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{{{C_{\text{a}}}}}+({a_{\text{c}}} - {\gamma _{\text{m}}})\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}}+{b^{\prime}_{3}}\frac{{{C_{\text{c}}}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{{V_{\text{c}}}}}\frac{{{C_{\text{c}}}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{f}}}}}f\frac{{{\Gamma ^*}}}{{{c_{\text{a}}}}}} \right].$$
(65)

When γ = 0, Eq. 65 transforms into the traditional Farquhar and Cernusak (2012) model. An equivalent expression for Eq. 65 can be obtained by replacing \(\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{{V_{\text{c}}}}}\frac{{{C_{\text{c}}}}}{{{C_{\text{a}}}}}\) with the equivalent \(\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{{\text{c}} - }}{\Gamma ^*}}}{{{c_{\text{a}}}}}\) (obtained by substituting \({V_{\text{c}}}=\frac{{\left( {A+{R_{\text{d}}}} \right){C_{\text{c}}}}}{{{C_{\text{c}}} - {\Gamma ^*}}}\)), which results in Eq. 19.

The fractionation factor \({a_{\text{c}}}\) is first introduced in Eq. 55 to describe the fractionation experienced by CO2 as it travels from the cytosol to the sites of carboxylation in the chloroplast. This CO2 can originate both in the ambient (A) and in the mitochondria \(\left( {\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)} \right)\). As CO2 travels from the ambient air into the cytosol, it experiences fractionations when it dissolves in water (es = 1.1‰) and diffuses through water (al = 0.7‰). However, CO2 evolved from the mitochondria into the cytosol only experiences \({a_{\text{l}}}\) because no dissolution fractionation can occur when all the evolved CO2 dissolves in water. Subsequently, the flux \(A+\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)\) enters the chloroplast and diffuses to the sites of rubisco. The substrate for rubisco is gas CO2 (note that the value for rubisco fractionation, \({b^{\prime}_3}\), is valid for a gas-phase context); thus, dissolved CO2 has to come out of solution to be carboxylated, and at this step there will be a dissolution fractionation. Accordingly, the total fractionation experienced by CO2 diffusing from the cytosol to the sites of carboxylation is ac = es + al = 1.8‰. With this definition, \({a_{\text{c}}}={a_{\text{m}}}\), so we could simply have used \({a_{\text{m}}}\). Nevertheless, we choose to retain \({a_{\text{c}}}\) to conceptually differentiate the diffusion steps from ambient into the mesophyll and from the mesophyll into the chloroplast.

One could derive an equation considering that the flux \(\gamma ({\mathcal{R}_{\text{d}}}+F)\) is only affected by \({a_{\text{l}}}\), meanwhile A is affected by both \({a_{\text{l}}}\) and \({e_{\text{s}}}\). In this case Eq. 55 is replaced by \({R_{\text{m}}}{C_{\text{m}}} - {R_{\text{c}}}{C_{\text{c}}}=\left( {{R_{\text{A}}}A+\frac{\gamma }{{{\alpha _{\text{s}}}}}\left( {{{\mathcal{R}^{\prime}}_{\text{d}}}+F^{\prime}} \right)} \right) \, {r_{\text{c}}}{\alpha _{\text{m}}}\), where \({\alpha _{\text{s}}}=1+{e_{\text{s}}}\), \({\alpha _{\text{m}}}=1+{a_{\text{m}}}\), and \(\frac{{{\alpha _{\text{m}}}}}{{{\alpha _{\text{s}}}}}={\alpha _{\text{l}}}=\frac{{1.0018}}{{1.0011}}=1.0007\). The resulting Δ13C model is identical to that in Eq. 65, with the exception that the term \({a_{\text{c}}} - {\gamma _{\text{m}}}\) is replaced by \({\gamma _{\text{l}}}=\frac{{{a_{\text{m}}}A+{a_{\text{l}}}\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right) - {\alpha _{\text{l}}}\gamma \left( {\frac{{{\mathcal{R}_{\text{d}}}e^{\prime}}}{{{\alpha _{\text{e}}}}}+\frac{{fF}}{{{\alpha _{\text{f}}}}}} \right)}}{{A+\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)}}\). The difference between \({a_{\text{c}}} - {\gamma _{\text{m}}}\) and \({\gamma _{\text{l}}}\) values is very small (see Supplemental Fig. 1). In turn, this demonstrates that even if we believe that a fractionation \({a_{\text{c}}}\) is more appropriate than \({a_{\text{l}}}\) for the flux \(\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right),\) the actual difference between both solutions is almost unnoticeable.

Deriving r m from Δ13C

The predicted Δ13C when \({g_{\text{m}}}\) is infinite, Δi, is (Farquhar and Cernusak 2012):

$${\Delta _{\text{i}}}=\frac{{\bar {a}}}{{1 - t}}\frac{{{C_{\text{a}}} - {C_{\text{i}}}}}{{{C_a}}}+\frac{{1+t}}{{1 - t}}\left[ {b^{\prime}_{3}\frac{{{C_{\text{i}}}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{\text{i}}} - {\Gamma ^*}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{f}}}}}f\frac{{{\Gamma ^*}}}{{{C_{\text{a}}}}}} \right]$$
(66)

Subtracting Δ13C (Eq. 19) from Δi (Eq. 66) results in:

$${\Delta _{\text{i}}} - {\Delta ^{13}}{\text{C}}=\frac{{1+t}}{{1 - t}}\left[ {\left( {b^{\prime}_{3} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}} \right)\frac{{{C_{\text{i}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}} - {a_{\text{m}}}\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{{{C_{\text{a}}}}} - \left( {{a_{\text{c}}} - {\gamma _{\text{m}}}} \right)\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}}} \right].$$
(67)

Equation 67 can be written as a function of resistances as:

$${\Delta _{\text{i}}} - {\Delta ^{13}}{\text{C}}=\frac{{1+t}}{{1 - t}}\left[ {\left( {b^{\prime}_{3}- \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}} \right)\frac{A}{{{C_{\text{a}}}}}{r_{\text{m}}} - {a_{\text{m}}}\frac{A}{{{C_{\text{a}}}}}{r_{\text{w}}} - \left( {{a_{\text{c}}} - {\gamma _{\text{m}}}} \right)\frac{{\left[ {A+\gamma ({R_{\text{d}}}+F)} \right]}}{{{C_{\text{a}}}}}{r_{\text{c}}}} \right]$$
(68)

where \({r_{\text{m}}},\;{r_{\text{w}}}\;{\text{and}}\;{r_{\text{c}}}\) are mesophyll, wall and chloroplast resistances, respectively, in units of µmol m−2 s−1 Pa−1. The \({r_{\text{m}}}\) can be solved from Eq. 68 as:

$${r_{\text{m}}}=\frac{{\frac{{1 - t}}{{1+t}}\frac{{{C_{\text{a}}}}}{A}\left( {{\Delta _{\text{i}}} - {\Delta ^{13}}{\text{C}}} \right)+{a_{\text{m}}}{r_{\text{w}}}+\left( {{a_{\text{c}}} - {\gamma _{\text{m}}}} \right){r_{\text{c}}}\left[ {1+\frac{{\gamma ({R_{\text{d}}}+F)}}{A}} \right]}}{{{{b^{\prime}_{3}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}}},$$
(69)

and the inverse of Eq. 69 is the calculation of \({g_{{\text{m}}13}}\) provided in Eq. 32. In Eq. 69, the term γm depends on Cc (see Eq. 20). Alternatively, Cc can be directly solved from Eq. 19, substituting in this equation γm for its calculation given in Eq. 20. This results in a quadratic equation with solution:

$${C_{\text{c}}}=\frac{{ - II+\sqrt {I{I^2} - 4 \times I \times III} }}{{2 \times I}},$$
(70)

where:

$$I=\left( {b^{\prime}_{3} - {a_{\text{c}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}} \right)\left( {A+\gamma {\mathcal{R}_{\text{d}}}} \right)+\gamma \frac{{{\alpha _{\text{c}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}{\mathcal{R}_{\text{d}}}$$
(71)
$$II=\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_d}}}{{A+{\mathcal{R}_{\text{d}}}}}\left[ {2{\Gamma ^*}A+\gamma {\Gamma ^*}\left( {{\mathcal{R}_{\text{d}}} - A} \right)} \right] - \frac{{{\alpha _{\text{c}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}{\mathcal{R}_{\text{d}}}\gamma \left( {{C_{\text{m}}}+{\Gamma ^*}} \right)+\gamma \frac{{{\alpha _{\text{c}}}}}{{{\alpha _{\text{f}}}}}{\Gamma ^*}f\left( {A+{\mathcal{R}_{\text{d}}}} \right)+\left( {{a_{\text{c}}} - {{b^{\prime}_{3}}}} \right){\Gamma ^*}A\left( {1 - \gamma } \right) - \left( {A+\gamma {\mathcal{R}_{\text{d}}}} \right)\left[ {\frac{{1 - t}}{{1+t}}{\Delta _{{\text{obs}}}}{C_{\text{a}}} - \frac{{\bar {a}}}{{1+t}}\left( {{C_{\text{a}}} - {C_{\text{i}}}} \right) - {a_{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right) - {a_{\text{c}}}{C_{\text{m}}}+{\Gamma ^*}f\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{f}}}}}} \right]$$
(72)
$$III={C_{\text{m}}}\gamma {\Gamma ^*}\left( {\frac{{{\alpha _{\text{c}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}{\mathcal{R}_{\text{d}}} - \frac{{{\alpha _{\text{c}}}}}{{{\alpha _{\text{f}}}}}f(A+{\mathcal{R}_{\text{d}}})} \right)+{\Gamma ^*}A\left( {1 - \gamma } \right)\left[ {\frac{{1 - t}}{{1+t}}{\Delta _{{\text{obs}}}}{C_{\text{a}}} - \frac{{\bar {a}}}{{1+t}}\left( {{C_{\text{a}}} - {C_{\text{i}}}} \right) - {a_{\text{m}}}\left( {{C_{\text{i}}} - {C_{\text{m}}}} \right)+\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{f}}}}}{\Gamma ^*}f - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}{\Gamma ^*} - {a_{\text{c}}}{C_{\text{m}}}} \right]$$
(73)

where Δobs (‰) is the observed 13C photosynthetic discrimination.

Partition Δ13C in component discriminations

Substituting \(\bar {a}=\frac{{{a_{\text{b}}}\left( {{C_{\text{a}}} - {C_{\text{s}}}} \right)+{a_{\text{s}}}\left( {{C_{\text{s}}} - {C_{\text{i}}}} \right)}}{{{C_{\text{a}}} - {C_{\text{i}}}}}\) in Eq. 19 and rearranging terms results in yet another equivalent expression for Δ13C:

$${\Delta ^{13}}{\text{C}}=\frac{{1+t}}{{1 - t}}\left[ {b^{\prime}_{3} - \left( {b^{\prime}_{3} - \frac{{{a_{\text{b}}}}}{{1+t}}} \right)\frac{{{C_{\text{a}}} - {C_{\text{s}}}}}{{{C_{\text{a}}}}} - \left( {b^{\prime}_{3} - \frac{{{a_{\text{s}}}}}{{1+t}}} \right)\frac{{{C_{\text{s}}} - {C_{\text{i}}}}}{{{C_{\text{a}}}}} - \left( {b^{\prime}_{3} - {a_{\text{m}}}} \right)\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{{{C_{\text{a}}}}} - \left( {b^{\prime}_{3} - {a_{\text{c}}}+{\gamma _{\text{m}}}} \right)\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{\text{c}}} - {{{{\Gamma}}}^*}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{f}}}}}f\frac{{{{{{\Gamma}}}^*}}}{{{C_{\text{a}}}}}} \right].$$
(74)

Equation 74 can be written in the notation of Ubierna and Farquhar (2014) as:

$${\Delta ^{13}}{\text{C}}={\Delta _{\text{b}}} - {\Delta _{{\text{rb}}}} - {\Delta _{{\text{rs~}}}} - {\Delta _{{\text{rw}}}} - {\Delta _{{\text{rc}}}} - {\Delta _{\text{e}}} - {\Delta _{\text{f}}},$$
(75)

where the calculation of \({\Delta _{\text{b}}},\;{\Delta _{{\text{rb}}}},\;{\Delta _{{\text{rs}}}}\;{\text{and}}\;{\Delta _{\text{f}}}\) is given in the Eqs. 2224 and Eq. 28 and:

$${\Delta _{{\text{rw}}}}=\frac{{1+t}}{{1 - t}} \, \left[ {b^{\prime}_{3} - {a_{\text{m}}}} \right]\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{{{C_{\text{a}}}}}$$
(76)
$${\Delta _{{\text{rc}}}}=\frac{{1+t}}{{1 - t}} \, \left[ {b^{\prime}_{3} - {a_{\text{c}}}+{\gamma _{\text{m}}}} \right]\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}}$$
(77)
$${\Delta _{\text{e}}}=\frac{{1+t}}{{1 - t}}\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{{\text{c}} }}-{\Gamma ^*}}}{{{C_{\text{a}}}}}$$
(78)

The \({\Delta _{\text{r}}}\) terms are so denoted, rather than as the \({\Delta _{\text{g}}}\) terminology used in Ubierna and Farquhar (2014), because their magnitudes are proportional to the magnitudes of the resistances involved. In Eq. 78, if Cc is substituted by \({C_{\text{m}}} - {r_{\text{c}}}\left[ {A+\gamma \left( {{R_{\text{d}}}+F} \right)} \right]\) (Eq. 12), and subsequently Cm is substituted by \({C_{\text{i}}} - {r_{\text{w}}}A\) (Eq. 11), the following result is obtained:

$${\Delta _{\text{e}}}=\frac{{1+t}}{{1 - t}}\left[ {\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{{\text{i}} }} -{\Gamma ^*}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{r_{\text{c}}}\left[ {A+\gamma \left( {{\mathcal{R}_{\text{d}}}+F} \right)} \right]}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{r_{\text{w}}}A}}{{{C_{\text{a}}}}}} \right].$$
(79)

Because \({C_{\text{m}}} - {C_{\text{c}}}={r_{\text{c}}}\left[ {A+\gamma \left( {{R_{\text{d}}}+F} \right)} \right]\) and \({C_{\text{i}}} - {C_{\text{m}}}={r_{\text{w}}}A\), Eq. 79 can be written as:

$${\Delta _{\text{e}}}=\frac{{1+t}}{{1 - t}}\left[ {\frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{{\text{i}} }}- {\Gamma ^*}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}} - \frac{{{\alpha _{\text{b}}}}}{{{\alpha _{\text{e}}}}}e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{{{C_{\text{a}}}}}} \right].$$
(80)

Now, in Eq. 80 the terms that are function of \(\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}}\) and \(\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{{{C_{\text{a}}}}}\) can be moved and placed with the component fractionations that are a function of these same gradients, which are \({\Delta _{{\text{rc}}}}\) and \({\Delta _{{\text{rw}}}}\), respectively, which results in the formulations of \({\Delta _{{\text{r}}{{\text{w}}^*}}}\) and \(~{\Delta _{{\text{r}}{{\text{c}}^*}}}\) presented in the main text. Thus \({\Delta _{{\text{rw}}}}\), \({\Delta _{{\text{rc}}}}\) and \({\Delta _{\text{e}}}\) are replaced by \({\Delta _{{\text{r}}{{\text{w}}^{\text{*}}}}},~{\Delta _{{\text{r}}{{\text{c}}^{\text{*}}}}},{\text{and}}\;{\Delta _{{{\text{e}}^*}}}\) given in Eqs. 2527. Note that \({\Delta _{{\text{rw}}}}+{\Delta _{{\text{rc}}}}+{\Delta _{\text{e}}}\) (Eqs. 7678) is the same as \({\Delta _{{\text{r}}{{\text{w}}^{\text{*}}}}}+{\Delta _{{\text{r}}{{\text{c}}^{\text{*}}}}}+{\Delta _{{{\text{e}}^{\text{*}}}}}\) (Eqs. 2527), they are just two different approaches of splitting the different components. Also note that in Eq. 77 and Eq. 26\({\gamma _{\text{m}}}\) depends on Cc.

Compare Eq. 19 with the expression given in Evans and von Caemmerer (2013)

The expression for \({\Delta ^{13}}{\text{C}}\) derived by Evans and von Caemmerer (2013) for the case γ = 1 is:

$${\Delta ^{13}}{\text{C}}=\frac{{\bar {a}}}{{1 - t}}+\frac{1}{{1 - t}}\left[ {\left( {1+t} \right){b^{\prime}_{3}} - \bar {a}} \right]\frac{{{C_{\text{i}}}}}{{{C_{\text{a}}}}} - \frac{{1+t}}{{1 - t}}\left[ {\left( {b^{\prime}_{3} - {a_{\text{m}}}} \right)\frac{{{r_{\text{w}}}A}}{{{C_{\text{a}}}}}+\frac{{f{{{{\Gamma}}}^*}+\frac{{e^{\prime}{\mathcal{R}_{\text{d}}}}}{k}}}{{{C_a}}}+\left( {\left( {b^{\prime}_{3} - {a_{\text{m}}}} \right)+\frac{{fF+e{\mathcal{R}_{\text{d}}}}}{{{V_{\text{c}}}}}} \right)\frac{{{r_{\text{c}}}{V_{\text{c}}}}}{{{C_{\text{a}}}}}} \right],$$
(81)

where \({r_{\text{w}}}=\frac{{{C_{\text{i}}} - {C_{\text{m}}}}}{A}\) and \({r_{\text{c}}}=\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{V_{\text{c}}}}}\) and k = Vc/Cc.

There are a few terms in Eq. 81 that can be substituted for equivalent expressions:

  1. 1.

    The term \({r_{\text{w}}}A\) can be replaced by \({C_{\text{i}}} - {C_{\text{m}}}\) (Eq. 11).

  2. 2.

    The term \({r_{\text{c}}}{V_{\text{c}}}\) can be replaced by \({C_{\text{m}}} - {C_{\text{c}}}\).

  3. 3.

    The term \(\frac{{e^{\prime}{\mathcal{R}_{\text{d}}}}}{k}\) can be replaced by \(\frac{{e^{\prime}{\mathcal{R}_{\text{d}}}({C_{\text{c}}} - {\Gamma ^*})}}{{A+{\mathcal{R}_{\text{d}}}}}\).

  4. 4.

    The term \(\frac{{fF+e^{\prime}{\mathcal{R}_{\text{d}}}}}{{{V_{\text{c}}}}}\) can be replaced by \(\frac{{f{\Gamma ^*}}}{{{C_{\text{c}}}}}+\frac{{e^{\prime}{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\left( {1 - \frac{{{\Gamma ^*}}}{{{C_{\text{c}}}}}} \right)\), by substituting \(F=\frac{{{\Gamma ^*}\left( {A+{R_{\text{d}}}} \right)}}{{{C_{\text{c}}} - {\Gamma ^*}}}\) and \({V_{\text{c}}}=A+{\mathcal{R}_{\text{d}}}+F\).

With these substitutions, Eq. 81 rearranges to:

$${\Delta ^{13}}{\text{C}}=\frac{{\bar {a}}}{{1 - t}}\frac{{{C_{\text{a}}} - {C_{\text{i}}}}}{{{C_{\text{a}}}}}+\frac{{1+t}}{{1 - t}}\left[ {{a_{\text{m}}}\frac{{{C_i} - {C_{\text{m}}}}}{{{C_{\text{a}}}}}+\left( {{a_{\text{m}}} - \frac{{f{\Gamma ^*}}}{{{C_{\text{c}}}}} - \frac{{e^{\prime}{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\left( {1 - \frac{{{\Gamma ^*}}}{{{C_{\text{c}}}}}} \right)} \right)\frac{{{C_{\text{m}}} - {C_{\text{c}}}}}{{{C_{\text{a}}}}}+{b^{\prime}_{3}}\frac{{{C_{\text{c}}}}}{{{C_{\text{a}}}}} - e^{\prime}\frac{{{\mathcal{R}_{\text{d}}}}}{{A+{\mathcal{R}_{\text{d}}}}}\frac{{{C_{\text{c}}} - {\Gamma ^*}}}{{{C_{\text{a}}}}} - f\frac{{{\Gamma ^*}}}{{{C_{\text{a}}}}}} \right],$$
(82)

which is equivalent to our derivation in Eq. 19 when γ = 1, approximating the “alpha” terms to 1 and substituting ac by am.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ubierna, N., Cernusak, L.A., Holloway-Phillips, M. et al. Critical review: incorporating the arrangement of mitochondria and chloroplasts into models of photosynthesis and carbon isotope discrimination. Photosynth Res 141, 5–31 (2019). https://doi.org/10.1007/s11120-019-00635-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-019-00635-8

Keywords

Navigation