Skip to main content
Log in

High light acclimation of Chromera velia points to photoprotective NPQ

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

It has previously been shown that the long-term treatment of Arabidopsis thaliana with the chloroplast inhibitor lincomycin leads to photosynthetic membranes enriched in antennas, strongly reduced in photosystem II reaction centers (PSII) and with enhanced nonphotochemical quenching (NPQ) (Belgio et al. Biophys J 102:2761–2771, 2012). Here, a similar physiological response was found in the microalga Chromera velia grown under high light (HL). In comparison to cells acclimated to low light, HL cells displayed a severe re-organization of the photosynthetic membrane characterized by (1) a reduction of PSII but similar antenna content; (2) partial uncoupling of antennas from PSII; (3) enhanced NPQ. The decrease in the number of PSII represents a rather unusual acclimation response compared to other phototrophs, where a smaller PSII antenna size is more commonly found under high light. Despite the diminished PSII content, no net damage could be detected on the basis of the Photosynthesis versus irradiance curve and electron transport rates pointing at the excess capacity of PSII. We therefore concluded that the photoinhibition is minimized under high light by a lower PSII content and that cells are protected by NPQ in the antennas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

(modified from Belgio et al. 2012)

Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

NPQ:

Nonphotochemical quenching

PSII:

Photosystem II reaction centers

HL:

High light

LL:

Low light

ΔpH:

Trans-thylakoid membrane proton gradient

F m :

Variable fluorescence

F m :

Maximum fluorescence

P max :

Maximal photosynthetic rate or photosynthetic capacity

TL:

Thermoluminescence

FRRF:

Fast repetition rate fluorescence

ETR:

Electron transport rates

σPSII:

Effective antenna size of PSII

I k :

Photosynthetic limiting light

I sat :

Light intensity where photosynthetic saturation starts

α-DM:

n-Dodecyl α-d-maltoside

DES:

De-epoxidation state

References

  • Anderson J, Osmond B (2001) Sun-shade responses: compromises between acclimation and photoinhibition. Elsevier, Amsterdam

    Google Scholar 

  • Anderson JM, Chow WS, Goodchild DJ (1988) Thylakoid membrane organization in sun/shade acclimation. Aust J Plant Physiol 15:11–26

    Article  Google Scholar 

  • Aro EM, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein—degradation in peas acclimated to different growth irradiances. Plant Physiol 103:835–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aro EM et al (2005) Dynamics of photosystem II: a proteomic approach to thylakoid protein complexes. J Exp Bot 56:347–356. doi:10.1093/jxb/eri041

    Article  CAS  PubMed  Google Scholar 

  • Bailey S, Horton P, Walters RG (2004) Acclimation of Arabidopsis thaliana to the light environment: the relationship between photosynthetic function and chloroplast composition. Planta 218:793–802. doi:10.1007/s00425-003-1158-5

    Article  CAS  PubMed  Google Scholar 

  • Ballottari M, Dall’Osto L, Morosinotto T, Bassi R (2007) Contrasting behavior of higher plant photosystem I and II antenna systems during acclimation. J Biol Chem 282:8947–8958. doi:10.1074/jbc.M606417200

    Article  CAS  PubMed  Google Scholar 

  • Barber J (1995) Photosynthesis—short-circuiting the Z-Scheme. Nature 376:388–389. doi:10.1038/376388a0

    Article  CAS  Google Scholar 

  • Beer A, Gundermann K, Beckmann J, Büchel C (2006) Subunit composition and pigmentation of fucoxanthin-chlorophyll proteins in diatoms: evidence for a subunit involved in diadinoxanthin and diatoxanthin binding. BioChemistry 45:13046–13053. doi:10.1021/bi061249h

    Article  CAS  PubMed  Google Scholar 

  • Behrenfeld MJ, Lee H, Small LF (1994) Interactions between nutritional-status and long-term responses to ultraviolet-b radiation stress in a marine diatom. Mar Biol 118:523–530. doi:10.1007/bf00350309

    Article  Google Scholar 

  • Behrenfeld MJ, Prášil O, Kolber ZS, Babin M, Falkowski PG (1998) Compensatory changes in Photosystem II electron turnover rates protect photosynthesis from photoinhibition. Photosynth Res 58:259–268. doi:10.1023/a:1006138630573

    Article  CAS  Google Scholar 

  • Belgio E, Johnson MP, Juric S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited-state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771. doi:10.1016/j.bpj.2012.05.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Belgio E, Ungerer P, Ruban AV (2015) Light-harvesting superstructures of green plant chloroplasts lacking photosystems. Plant Cell Environ 38:2035–2047. doi:10.1111/pce.12528

    Article  CAS  PubMed  Google Scholar 

  • Belgio E et al (2017) High photochemical trapping efficiency in Photosystem I from the red clade algae Chromera velia and Phaeodactylum tricornutum. Biochim Biophysica Acta 1858:56–63. doi:10.1016/j.bbabio.2016.10.002

    Article  CAS  Google Scholar 

  • Boardman NK (1977) Comparative Photosynthesis of Sun and Shade Plants. Annu Rev Plant Physiol Plant Mol Biol 28:355–377 doi:10.1146/annurev.pp.28.060177.002035

    Article  CAS  Google Scholar 

  • Bonente G, Pippa S, Castellano S, Bassi R, Ballottari M (2012) Acclimation of Chlamydomonas reinhardtii to different growth irradiances. J Biol Chem 287:5833–5847. doi:10.1074/jbc.M111.304279

    Article  CAS  PubMed  Google Scholar 

  • Bose S, Fork DC (1988) Mechanisms of light state transition in photosynthesis of green plants and red algae. Indian J Biochem Biophys 25:631–635

    CAS  PubMed  Google Scholar 

  • Büchel C (2003) Fucoxanthin-chlorophyll proteins in diatoms: 18 and 19 kDa subunits assemble into different oligomeric states. BioChemistry 42:13027–13034

    Article  PubMed  Google Scholar 

  • Caffarri S, Kouril R, Kereiche S, Boekema EJ, Croce R (2009) Functional architecture of higher plant photosystem II supercomplexes. EMBO J 28:3052–3063. doi:10.1038/emboj.2009.232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cartaxana P, Domingues N, Cruz S, Jesus B, Laviale M, Serodio J, da Silva JM (2013) Photoinhibition in benthic diatom assemblages under light stress. Aquat Microb Ecol 70:87–92. doi:10.3354/ame01648

    Article  Google Scholar 

  • Chukhutsina VU, Büchel C, van Amerongen H (2013) Variations in the first steps of photosynthesis for the diatom Cyclotella meneghiniana grown under different light conditions. Biochim Biophys Acta 1827:10–18 doi:10.1016/j.bbabio.2012.09.015

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection in plants: a role for the xanthophyll zeaxanthin. Biochim Biophysica Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Demmig-Adams B, Adams WW (1992) Carotenoid composition in sun and shade leaves of plants with different life forms. Plant Cell Environ 15:411–419. doi:10.1111/j.1365-3040.1992.tb00991.x

    Article  CAS  Google Scholar 

  • Dera J, Gordon H (1968) Light field fluctuations in the photic zone. Limnol Oceanogr 13:697–699

    Article  Google Scholar 

  • Dobáková M, Tichý M, Komenda J (2007) Role of the PsbI protein in photosystem II assembly and repair in the cyanobacterium Synechocystis sp PCC 6803. Plant Physiol 145:1681–1691. doi:10.1104/pp.107.107805

    Article  PubMed  PubMed Central  Google Scholar 

  • Eilers P, Peeters J (1988) A model for the relationship between light-intensity and the rate of photosynthesis in phytoplancton. Ecol Model 42:199–215

    Article  Google Scholar 

  • Falkowski PG, Owens TG (1980) Light-shade adaptation—2 strategies in marine-phytoplancton. Plant Physiol 66:592–595. doi:10.1104/pp.66.4.592

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. 2nd edn. Princeton University Press, New Jersey

    Google Scholar 

  • Falkowski P, Wirick C (1981) A simulation model of the effects of vertical mixing on primary productivity. Mar Biol 62:69–75

    Article  Google Scholar 

  • Finazzi G, Minagawa J (2014) High light acclimation in green microalgae. In: Demmig-Adams B, Adams WW, Garab G, Govindjee (eds) Non-photochemical quenching and energy dissipation in plants, algae and cyanobacteria. Advances in photosynthesis and respiration—including bioenergy and related processes, vol 40. Springer Netherlands, Dordrecht

    Google Scholar 

  • Gardian Z, Tichý J, Vácha F (2011) Structure of PSI, PSII and antennae complexes from yellow-green alga Xanthonema debile. Photosynth Res 108:25–32

    Article  CAS  PubMed  Google Scholar 

  • Giovagnetti V, Ruban AV (2015) Discerning the effects of photoinhibition and photoprotection on the rate of oxygen evolution in Arabidopsis leaves. J Photochem Photobiol B 152(Part B):272–278 doi:10.1016/j.jphotobiol.2015.09.010

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Lepetit B, Wilhelm C (2006) Evidence for a rebinding of antheraxanthin to the light-harvesting complex during the epoxidation reaction of the violaxanthin cycle. J Plant Physiol 163:585–590. doi:10.1016/j.jplph.2005.07.009

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Jakob T, Wilhelm C, Goss R (2009) The regulation of xanthophyll cycle activity and of non-photochemical fluorescence quenching by two alternative electron flows in the diatoms Phaeodactylum tricornutum and Cyclotella meneghiniana. Biochim Biophys Acta 1787:929–938 doi:10.1016/j.bbabio.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  • Grouneva I, Rokka A, Aro EM (2011) The thylakoid membrane proteome of two marine diatoms outlines both diatom-specific and species-specific features of the photosynthetic machinery. J Proteome Res 10:5338–5353. doi:10.1021/pr200600f

    Article  CAS  PubMed  Google Scholar 

  • Hakala M, Tuominen I, Keranen M, Tyystjarvi T, Tyystjarvi E (2005) Evidence for the role of the oxygen-evolving manganese complex in photoinhibition of Photosystem II. Biochim Biophys Acta 1706:68–80 doi:10.1016/j.bbabio.2004.09.001

    Article  CAS  PubMed  Google Scholar 

  • Havelková-Doušová H, Prášil O, Behrenfeld M (2004) Photoacclimation of Dunaliella tertiolecta (Chlorophyceae) under fluctuating irradiance. Photosynthetica 42:273–281

    Article  Google Scholar 

  • Hogewoning SW, Wientjes E, Douwstra P, Trouwborst G, van Ieperen W, Croce R, Harbinson J (2012) Photosynthetic quantum yield dynamics: from photosystems to leaves. Plant Cell 24:1921–1935. doi:10.1105/tpc.112.097972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson MP, Goral TK, Duffy CD, Brain AP, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light-harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479. doi:10.1105/tpc.110.081646

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kagawa T et al (2001) Arabidopsis NPL1: a phototropin homolog controlling the chloroplast high-light avoidance response. Science 291:2138–2141

    Article  CAS  PubMed  Google Scholar 

  • Kaňa R, Vass I (2008) Thermoimaging as a tool for studying light-induced heating of leaves Correlation of heat dissipation with the efficiency of photosystem II photochemistry and non-photochemical quenching. Environ Exp Bot 64:90–96. doi:10.1016/j.envexpbot.2008.02.006

    Article  Google Scholar 

  • Kaňa R, Lazár D, Prášil O, Naus J (2002) Experimental and theoretical studies on the excess capacity of Photosystem II. Photosynth Res 72:271–284. doi:10.1023/a:1019894720789

    Article  PubMed  Google Scholar 

  • Kaňa R, Prášil O, Komárek O, Papageorgiou G, Govindjee (2009) Spectral characteristic of fluorescence induction in a model cyanobacterium, Synechococcus sp (PCC 7942). Biochim Biophysica Acta 1787:1170–1178

    Article  Google Scholar 

  • Kaňa R, Kotabová E, Kopečná J, Trsková E, Belgio E, Sobotka R, Ruban AV (2016) Violaxanthin inhibits nonphotochemical quenching in light-harvesting antennae of Chromera velia. FEBS Lett 590:1076–1085

    Article  PubMed  Google Scholar 

  • Kendrick R, Kronenberg G (1994) Photomorphogenesis in plants. 2nd edn. Kluwer Academic Publishers, The Netherlands

    Book  Google Scholar 

  • Kirk JT (1994) Light and photosynthesis in aquatic ecosystems. 2nd edn. Cambridge Universtity press, Cambridge

    Book  Google Scholar 

  • Knoppová J, Jianfeng Y, Koník P, Nixon P, Komenda J (2016) CyanoP is involved in the early steps of Photosystem II assembly in the cyanobacterium Synechocystis sp PCC 6803. Plant Cell Physiol 57:1921–1931

    Article  PubMed  Google Scholar 

  • Kok B (1956) On the inhibition of photosynthesis by intense light. Biochim Biophys Acta 21:234–244. doi:10.1016/0006-3002(56)90003-8

    Article  CAS  PubMed  Google Scholar 

  • Kolber Z, Falkowski P (1993) Use of active fluorescence to estimate phytoplankton photosynthesis in situ. Limnol Oceanogr 38:1646–1665

    Article  CAS  Google Scholar 

  • Kolber Z, Prášil O, Falkowski P (1998) Measurements of variable chlorophyll fluorescence using fast repetition rate techniques: defining methodology and experimental protocols. Biochimica et Biophysica Acta 1367:88–106

    Article  CAS  PubMed  Google Scholar 

  • Komenda J, Reisinger V, Müller BC, Dobáková M, Granvogl B, Eichacker LA (2004) Accumulation of the D2 protein is a key regulatory step for assembly of the photosystem II reaction center complex in Synechocystis PCC 6803. J Biol Chem 279:48620–48629

    Article  CAS  PubMed  Google Scholar 

  • Kotabová E, Kaňa R, Jarešová J, Prášil O (2011) Non-photochemical fluorescence quenching in Chromera velia is enabled by fast violaxanthin de-epoxidation. FEBS Lett 585:1941–1945 doi:10.1016/j.febslet.2011.05.015

    Article  PubMed  Google Scholar 

  • Kotabová E, Jarešová J, Kaňa R, Sobotka R, Bína D, Prášil O (2014) Novel type of red-shifted chlorophyll alpha antenna complex from Chromera velia. I. Physiological relevance and functional connection to photosystems. Biochim Biophys Acta 1837:734–743 doi:10.1016/j.bbabio.2014.01.012

    Article  PubMed  Google Scholar 

  • Kouřil R, Dekker JP, Boekema EJ (2012) Supramolecular organization of photosystem II in green plants. Biochim Biophys Acta 1817:2–12 doi:10.1016/j.bbabio.2011.05.024

    Article  PubMed  Google Scholar 

  • Kouřil R, Wientjes E, Bultema JB, Croce R, Boekema EJ (2013) High-light vs. low-light: effect of light acclimation on photosystem II composition and organization in Arabidopsis thaliana. Biochim Biophys Acta 1827:411–419 doi:10.1016/j.bbabio.2012.12.003

    Article  PubMed  Google Scholar 

  • Küpper H, Setlik I, Spiller M, Küpper FC, Prasil O (2002) Heavy metal-induced inhibition of photosynthesis: targets of in vivo heavy metal chlorophyll formation. J Phycol 38:429–441. doi:10.1046/j.1529-8817.2002.t01-1-01148.x

    Article  Google Scholar 

  • Lavaud J, Strzepek RF, Kroth PG (2007) Photoprotection capacity differs among diatoms: Possible consequences on the spatial distribution of diatoms related to fluctuations in the underwater light climate. Limnol Oceanogr 52:1188–1194

    Article  CAS  Google Scholar 

  • Leong TY, Anderson JM (1984) Adaptation of the thylakoid membranes of pea-chloroplasts to light intensities 0.1. study on the distribution of chlorophyll-protein complexes. Photosynth Res 5:105–115. doi:10.1007/bf00028524

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Szabo M, Hoffmann R, Garab GZ, Wilhelm C, Goss R (2007) Spectroscopic and molecular characterization of the oligomeric antenna of the diatom Phaeodactylum tricornutum. BioChemistry 46:9813–9822. doi:10.1021/bi7008344

    Article  CAS  PubMed  Google Scholar 

  • Lepetit B, Volke D, Gilbert M, Wilhelm C, Goss R (2010) Evidence for the existence of one antenna-associated, lipid-dissolved and two protein-bound pools of diadinoxanthin cycle pigments in diatoms. Plant Physiol 154:1905–1920. doi:10.1104/pp.110.166454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lichtenthaler HK, Burkard G, Kuhn G, Prenzel U (1981) Light-induced accumulation and stability of chlorophylls and chlorophyll-proteins during chloroplast development in radish seedlings. ZNaturforsch(C) 36:421–430

    Google Scholar 

  • Mann M, Hoppenz P, Jakob T, Weisheit W, Mittag M, Wilhelm C, Goss R (2014) Unusual features of the high light acclimation of Chromera velia. Photosynth Res. doi:10.1007/s11120-014-0019-3

    PubMed  Google Scholar 

  • Moore RB et al (2008) A photosynthetic alveolate closely related to apicomplexan parasites. Nature 451:959–963. doi:10.1038/nature06635

    Article  CAS  PubMed  Google Scholar 

  • Morosinotto T, Bassi R, Frigerio S, Finazzi G, Morris E, Barber J (2006) Biochemical and structural analyses of a higher plant photosystem II supercomplex of a photosystem I-less mutant of barley—consequences of a chronic over-reduction of the plastoquinone pool. Febs J 273:4616–4630. doi:10.1111/j.1742-4658.2006.05465.x

    Article  CAS  PubMed  Google Scholar 

  • Nixon PJ, Michoux F, Yu JF, Boehm M, Komenda J (2010) Recent advances in understanding the assembly and repair of photosystem II. Ann Bot 106:1–16. doi:10.1093/aob/mcq059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359 doi:10.1146/annurev.arplant.50.1.333

    Article  CAS  PubMed  Google Scholar 

  • Oborník M, Vancová M, Lai DH, Janouškovec J, Keeling PJ, Lukeš J (2011) Morphology and ultrastructure of multiple life cycle stages of the photosynthetic relative of apicomplexa, Chromera velia. Protist 162:115–130. doi:10.1016/j.protis.2010.02.004

    Article  PubMed  Google Scholar 

  • Oguchi R, Hikosaka K, Hirose T (2003) Does the photosynthetic light-acclimation need change in leaf anatomy? Plant Cell Environ 26:505–512. doi:10.1046/j.1365-3040.2003.00981.x

    Article  Google Scholar 

  • Ohnishi N, Allakhverdiev SI, Takahashi S, Higashi S, Watanabe M, Nishiyama Y, Murata N (2005) Two-step mechanism of photodamage to photosystem II: step 1 occurs at the oxygen-evolving complex and step 2 occurs at the photochemical reaction center. BioChemistry 44:8494–8499. doi:10.1021/bi047518q

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi P et al (2009) Mutants, overexpressors, and interactors of Arabidopsis plastocyanin isoforms: revised roles of plastocyanin in photosynthetic electron flow and thylakoid redox state. Mol Plant 2:236–248 doi:10.1093/mp/ssn041

    Article  CAS  PubMed  Google Scholar 

  • Porra R, Thompson W, Kriedemann P (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of Photosynthesis Induced by Visible-Light. Annu Rev Plant Physiol Plant Mol Biol 35:15–44 doi:10.1146/annurev.pp.35.060184.000311

    Article  CAS  Google Scholar 

  • Prášil O, Adir N, Ohad I (1992) Dynamics of photosystem II: mechanism of photoinhibition and recovery processes. In: Barber J (ed) The Photosystems: structure, function and molecular biology, vol 11. Elsevier, Amsterdam, pp 293–348

    Google Scholar 

  • Pyke K (2009) Plastid biology. Plastid biology. Cambridge University Press, Cambridge. doi:10.1017/cbo9780511626715

    Book  Google Scholar 

  • Quigg A et al (2012) Photosynthesis in Chromera velia represents a simple system with high efficiency. PloS ONE 7:e47036. doi:10.1371/journal.pone.0047036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roach T, Krieger-Liszkay A (2014) Regulation of photosynthetic electron transport and photoinhibition. Curr Protein Pept Sci 15:351–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roberty S, Bailleul B, Berne N, Franck F, Cardol P (2014) PSI Mehler reaction is the main alternative photosynthetic electron pathway in Symbiodinium sp., symbiotic dinoflagellates of cnidarians. New Phytol 204:81–91. doi:10.1111/nph.12903

    Article  CAS  PubMed  Google Scholar 

  • Ruban A (2013) The photosynthetic membrane. Molecular mechanisms and biophysics of light harvesting. Wiley, United Kingdom

    Google Scholar 

  • Ruban AV, Murchie EH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: A new approach. Biochim Biophys Acta 1817:977–982 doi:10.1016/j.bbabio.2012.03.026

    Article  CAS  PubMed  Google Scholar 

  • Ruban A et al (2006) Plasticity in the composition of the light harvesting antenna of higher plants preserves structural integrity and biological function. J Biol Chem 281:14981–14990

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CD (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181. doi:10.1016/j.bbabio.2011.04.007

    Article  CAS  PubMed  Google Scholar 

  • Schöttler MA, Tóth SZ (2014) Photosynthetic complex stoichiometry dynamics in higher plants: environmental acclimation and photosynthetic flux control. Front Plant Sci 5. doi:10.3389/fpls.2014.00188

  • Suggett DJ, Moore MC, Geider RJ (2010) Estimating aquatic productivity from active fluorescence measurement. In: Suggett DJ PO, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Dordrecht, pp 103–127

    Chapter  Google Scholar 

  • Terashima I, Miyazawa SI, Hanba YT (2001) Why are sun leaves thicker than shade leaves? Consideration based on analyses of CO2 diffusion in the leaf. J Plant Res 114:93–105. doi:10.1007/pl00013972

    Article  CAS  Google Scholar 

  • Tichý J et al (2013) Light harvesting complexes of Chromera velia, photosynthetic relative of apicomplexan parasites. Biochim Biophys Acta 1827:723–729. doi:10.1016/j.bbabio.2013.02.002

    Article  PubMed  Google Scholar 

  • Tikkanen M et al (2006) State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793. doi:10.1007/s11103-006-9044-8

    Article  PubMed  Google Scholar 

  • Tyystjarvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218. doi:10.1073/pnas.93.5.2213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Kooten O, Snel J (1990) The use of chlorophyll fluorescence nomenclature in plant stress physiology. Photosynth Res 25:147–150

    Article  PubMed  Google Scholar 

  • Walters RG (2005) Towards an understanding of photosynthetic acclimation. J Exp Bot 56:435–447. doi:10.1093/jxb/eri060

    Article  CAS  PubMed  Google Scholar 

  • Ware MA, Belgio E, Ruban AV (2015) Photoprotective capacity of non-photochemical quenching in plants acclimated to different light intensities. Photosynth Res 126:261–274. doi:10.1007/s11120-015-0102-4

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem B 117:11200–11208. doi:10.1021/jp401663w

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Martina Bečková and Ms. Lenka Moravcová for excellent technical help with electrophoresis and Dr. E. Lawrenz for useful discussions. This research project was supported by the Institutional project Algatech Plus (MSMT LO1416) from the Czech Ministry of Education, Youth and Sport. The work of E.B. and E.T. was further supported by The Czech Science Foundation GAČR (Grantová agentura České republiky): 16-10088S granted to R.K and 17-02363Y granted to E.B; GAJU 014/2016/P was granted to E.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erica Belgio.

Additional information

Erica Belgio and Eliška Trsková have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 4224 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Belgio, E., Trsková, E., Kotabová, E. et al. High light acclimation of Chromera velia points to photoprotective NPQ. Photosynth Res 135, 263–274 (2018). https://doi.org/10.1007/s11120-017-0385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-017-0385-8

Keywords

Navigation