Skip to main content
Log in

Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC6803

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Living organisms must defend themselves against various environmental stresses. Extracellular polysaccharide-producing cells exhibit enhanced tolerance toward adverse environmental stress. In Synechocystis sp. PCC6803 (Synechocystis), lipopolysaccharide (LPS) may play a role in this protection. To examine the relationship between stress tolerance of Synechocystis and LPS, we focused on Slr2019 because Slr2019 is homologous to MsbA in Escherichia coli, which is related to LPS synthesis. First, to obtain a defective mutant of LPS, we constructed the slr2019 insertion mutant (slr2019) strain. Sodium deoxycholate-polyacrylamide gel electrophoresis indicated that slr2019 strain did not synthesize normal LPS. Second, to clarify the participation of LPS in acid tolerance, wild type (WT) and slr2019 strain were grown under acid stress; slr2019 strain growth was significantly weaker than WT growth. Third, to examine influences on stress tolerance, slr2019 strain was grown under various stresses. Under salinity and temperature stress, slr2019 strain grew significantly slower than WT. To confirm cell morphology, cell shape and envelope of slr2019 strain were observed by transmission electron microscopy; slr2019 cells contained more electron-transparent bodies than WT cells. Finally, to confirm whether electron-transparent bodies are poly-3-hydroxybutyrate (PHB), slr2019 strain was stained with Nile Blue A, a PHB detector, and observed by fluorescence microscopy. The PHB granule content ratio of WT and slr2019 strain grown at BG-11 pH 8.0 was each 7.18 and 8.41 %. At pH 6.0, the PHB granule content ratio of WT and slr2019 strain was 2.99 and 2.60 %. However, the PHB granule content ratio of WT and slr2019 strain grown at BG-11N-reduced was 10.82 and 0.56 %. Because slr2019 strain significantly decreased PHB under BG-11N-reduced compared with WT, LPS synthesis may be related to PHB under particular conditions. These results indicated that Slr2019 is necessary for Synechocystis survival in various stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

EPS:

Extracellular polysaccharide

Kdo:

3-Deoxy-d-manno-oct-2-ulosonic acid

LPS:

Lipopolysaccharide

OM:

Outer membrane

PHB:

Poly-3-hydroxybutyrate

qRT-PCR:

Quantitative reverse transcription polymerase chain reaction

SDOC-PAGE:

Sodium deoxycholate-polyacrylamide gel electrophoresis

Synechocystis :

Synechocystis sp. PCC6803

WT:

Wild type

References

  • Cameron RE (1962) Species of Nostoc Vaucher occurring in the Sonoran Desert in Arizona. Trans Am Microsc Soc 81:379–384

    Article  Google Scholar 

  • Davey ME, O’toole GA (2000) Microbial biofilms: from ecology to molecular genetics. Microbiol Mol Biol Rev 64:847–867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Doerrler WT, Reedy MC, Raetz CR (2001) An escherichia coli mutant defective in lipid export. J Biol Chem 276:11461–11464

  • Fisher ML, Allen R, Luo Y, Curtiss R III (2013) Export of extracellular polysaccharides modulates adherence of the Cyanobacterium synechocystis. PLoS One 8:e74514

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Flemming HC, Neu TR, Wozniak DJ (2007) The EPS matrix: the “house of biofilm cells”. J Bacteriol 189:7945–7947

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fujii M, Sato Y, Ito H, Masago Y, Omura T (2012) Monosaccharide composition of the outer membrane lipopolysaccharide and O-chain from the freshwater cyanobacterium Microcystis aeruginosa NIES-87. J Appl Microbiol 113:896–903

    Article  CAS  PubMed  Google Scholar 

  • Hihara Y, Kamei A, Kanehisa M, Kaplan A, Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hihara Y, Sonoike K, Kanehisa M, Ikeuchi M (2003) DNA microarray analysis of redox-responsive genes in the genome of the cyanobacterium Synechocystis sp. strain PCC 6803. J Bacteriol 185:1719–1725

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kanesaki Y, Suzuki I, Allakhverdiev SI, Mikami K, Murata N (2002) Salt stress and hyperosmotic stress regulate the expression of different sets of genes in Synechocystis sp. PCC 6803. Biochem Biophys Res Commun 290:339–348

    Article  CAS  PubMed  Google Scholar 

  • Karow M, Georgopoulos C (1993) The essential Escherichia coli msbA gene, a multicopy suppressor of null mutations in the htrB gene, is related to the universally conserved family of ATP-dependent translocators. Mol Microbiol 7:69–79

    Article  CAS  PubMed  Google Scholar 

  • Keleti G, Sykora JL, Lippy EC, Shapiro MA (1979) Composition and biological properties of lipopolysaccharides isolated from Schizothrix calcicola (Ag.) Gomont (Cyanobacteria). Appl Environ Microbiol 38:471–477

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kobayashi M, Ishizuka T, Katayama M, Kanehisa M, Bhattacharyya-Pakrasi M, Pakrasi HB, Ikeuchi M (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 45:290–299

    Article  CAS  PubMed  Google Scholar 

  • Krasikov V, Aguirre von Wobeser E, Dekker HL, Huisman J, Matthijs HC (2012) Time-series resolution of gradual nitrogen starvation and its impact on photosynthesis in the cyanobacterium PCC 6803. Physiol Plant 145:426–439

    Article  CAS  PubMed  Google Scholar 

  • Li J, Wang N (2011) Genome-wide mutagenesis of Xanthomonas axonopodis pv. citri reveals novel genetic determinants and regulation mechanisms of biofilm formation. PLoS One 6:e21804

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lipman CB (1941) The successful revival of Nostoc commune from a herbarium specimen eighty-seven years old. Bull Torr Bot Club 68:664–666

    Article  Google Scholar 

  • Los DA, Ray MK, Murata N (1997) Differences in the control of the temperature-dependent expression of four genes for desaturases in Synechocystis sp. PCC 6803. Mol Microbiol 25:1167–1175

    Article  CAS  PubMed  Google Scholar 

  • Marbouty M, Mazouni K, Saguez C, Cassier-Chauvat C, Chauvat F (2009) Characterization of the Synechocystis strain PCC 6803 penicillin-binding proteins and cytokinetic proteins FtsQ and FtsW and their network of interactions with ZipN. J Bacteriol 191:5123–5133

  • Martinić M, Hoare A, Contreras I, Alvarez SA (2011) Contribution of the lipopolysaccharide to resistance of Shigella flexneri 2a to extreme acidity. PLoS One 6:e25557

    Article  PubMed Central  PubMed  Google Scholar 

  • McGowan CC, Necheva A, Thompson SA, Cover TL, Blaser MJ (1998) Acid-induced expression of an LPS-associated gene in Helicobacter pylori. Mol Microbiol 30:19–31

    Article  CAS  PubMed  Google Scholar 

  • Murata M, Fujimoto H, Nishimura K, Charoensuk K, Nagamitsu H, Raina S, Kosaka T, Oshima T, Ogasawara N, Yamada M (2011) Molecular strategy for survival at a critical high temperature in Eschierichia coli. PLoS One 6:e20063

  • Nitta K, Nagayama K, Danev R, Kaneko Y (2009) Visualization of BrdU-labelled DNA in cyanobacterial cells by Hilbert differential contrast transmission electron microscopy. J Microsc 234:118–123

    Article  CAS  PubMed  Google Scholar 

  • Ohta H, Shibata Y, Haseyama Y, Yoshino Y, Suzuki T, Kagasawa T, Kamei A, Ikeuchi M, Enami I (2005) Identification of genes expressed in response to acid stress in Synechocystis sp. PCC 6803 using DNA microarrays. Photosynth Res 84:225–230

    Article  CAS  PubMed  Google Scholar 

  • Osanai T, Kuwahara A, Iijima H, Toyooka K, Sato M, Tanaka K, Ikeuchi M, Saito K, Hirai MY (2013) Pleiotropic effect of sigE over-expression on cell morphology, photosynthesis and hydrogen production in Synechocystis sp. PCC 6803. Plant J 76:456–465

  • Ozturk S, Aslim B (2010) Modification of exopolysaccharide composition and production by three cyanobacterial isolates under salt stress. Environ Sci Pollut Res Int 17:595–602

    Article  CAS  PubMed  Google Scholar 

  • Pereira S, Micheletti E, Zille A, Santos A, Moradas-Ferreira P, Tamagnini P, De Philippis R (2011) Using extracellular polymeric substances (EPS)-producing cyanobacteria for the bioremediation of heavy metals: do cations compete for the EPS functional groups and also accumulate inside the cell? Microbiology 157:451–458

    Article  CAS  PubMed  Google Scholar 

  • Polissi A, Georgopoulos C (1996) Mutational analysis and properties of the msbA gene of Escherichia coli, coding for an essential ABC family transporter. Mol Microbiol 20:1221–1233

    Article  CAS  PubMed  Google Scholar 

  • Raetz CR, Whitfield C (2002) Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rapala J, Lahti K, Räsänen LA, Esala AL, Niemelä SI, Sivonen K (2002) Endotoxins associated with cyanobacteria and their removal during drinking water treatment. Water Res 36:2627–2635

  • Reuhs BL, Geller DP, Kim JS, Fox JE, Kolli VS, Pueppke SG (1998) Sinorhizobium fredii and Sinorhizobium meliloti produce structurally conserved lipopolysaccharides and strain-specific K antigens. Appl Environ Microbiol 64:4930–4938

    CAS  PubMed Central  PubMed  Google Scholar 

  • Schlebusch M, Forchhammer K (2010) Requirement of the nitrogen starvation-induced protein Sll0783 for polyhydroxybutyrate accumulation in Synechocystis sp. strain PCC 6803. Appl Environ Microbiol 76:6101–6107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt W, Drews G, Weckesser J, Mayer H (1980) Lipopolysaccharides in four strains of the unicellular Cyanobacterium synechocystis. Arch Microbiol 127:217–222

  • Snyder DS, Brahamsha B, Azadi P, Palenik B (2009) Structure of compositionally simple lipopolysaccharide from marine synechococcus. J Bacteriol 191:5499–5509

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sperandeo P, Lau FK, Carpentieri A, De Castro C, Molinaro A, Dehò G, Silhavy TJ, Polissi A (2008) Functional analysis of the protein machinery required for transport of lipopolysaccharide to the outer membrane of Escherichia coli. J Bacteriol 190:4460–4469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Stanier RY, Kunisawa R, Mandel M, Cohen-Bazire G (1971) Purification and properties of unicellular blue-green algae (order Chroococcales). Bacteriol Rev 35:171–205

  • Stewart I, Schluter PJ, Shaw GR (2006) Cyanobacterial lipopolysaccharides and human health—a review. Environ Health 5:7

    Article  PubMed Central  PubMed  Google Scholar 

  • Sutherland I (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9

    CAS  PubMed  Google Scholar 

  • Tahara H, Uchiyama J, Yoshihara T, Matsumoto K, Ohta H (2012) Role of Slr 1045 in environmental stress tolerance and lipid transport in cyanobacterium Synechocystis sp. PCC6803. Biochim Biophys Acta 1817:1360–1366

    Article  CAS  PubMed  Google Scholar 

  • Tsang TK, Roberson RW, Vermaas WF (2013) Polyhydroxybutyrate particles in Synechocystis sp. PCC 6803: facts and fiction. Photosynth Res 118:37–49

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama J, Asakura R, Kimura M, Moriyama A, Tahara H, Kobayashi Y, Kubo Y, Yoshihara T, Ohta H (2012) Slr0967 and Sll0939 induced by the SphR response regulator in Synechocystis sp. PCC 6803 are essential for growth under acid stress conditions. Biochim Biophys Acta 1817:1270–1276

    Article  CAS  PubMed  Google Scholar 

  • Uchiyama J, Asakura R, Moriyama A, Kubo Y, Shibata Y, Yoshino Y, Tahara H, Matsuhashi A, Sato S, Nakamura Y, Tabata S, Ohta H (2014) Sll0939 is induced by Slr0967 in the cyanobacterium Synechocystis sp. PCC6803 and is essential for growth under various stress conditions. Plant Physiol Biochem 81:36–43

    Article  CAS  PubMed  Google Scholar 

  • Weckesser J, Katz A, Drews G, Mayer H, Fromme I (1974) Lipopolysaccharide containing L-acofriose in the filamentous blue-green alga Anabaena variabilis. J Bacteriol 120:672–678

    CAS  PubMed Central  PubMed  Google Scholar 

  • Williamson JM, Anderson MS, Raetz CR (1991) Acyl-acyl carrier protein specificity of UDP-GlcNAc acyltransferases from gram-negative bacteria: relationship to lipid A structure. J Bacteriol 173:3591–3596

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wu GF, Shen ZY, Wu QY (2002) Modification of carbon partitioning to enhance PHB production in Synechocystis sp. PCC 6803. Enzyme Microb Technol 30:710–715

    Article  CAS  Google Scholar 

  • Yamauchi Y, Kaniya Y, Kaneko Y, Hihara Y (2011) Physiological roles of the cyAbrB transcriptional regulator pair Sll0822 and Sll0359 in Synechocystis sp. strain PCC 6803. J Bacteriol 193:3702–3709

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang X, Chen G, Qin C, Wang Y, Wei D (2012) Slr0643, an S2P homologue, is essential for acid acclimation in the cyanobacterium Synechocystis sp. PCC 6803. Microbiology 158:2765–2780

    Article  CAS  PubMed  Google Scholar 

  • Zhou Z, White KA, Polissi A, Georgopoulos C, Raetz CR (1998) Function of Escherichia coli MsbA an essential ABC family transporter in lipid A and phospholipid biosynthesis. J Biol Chem 273:12466–12475

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the Program for Development of Strategic Research Center in Private Universities, which was supported by MEXT. The authors would like to thank Enago (www.enago.jp) for the English language review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayumi Matsuhashi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1544 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matsuhashi, A., Tahara, H., Ito, Y. et al. Slr2019, lipid A transporter homolog, is essential for acidic tolerance in Synechocystis sp. PCC6803. Photosynth Res 125, 267–277 (2015). https://doi.org/10.1007/s11120-015-0129-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0129-6

Keywords

Navigation