Skip to main content
Log in

Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In their natural environment, plants are exposed to varying light conditions, which can lead to a build-up of excitation energy in photosystem (PS) II. Non-photochemical quenching (NPQ) is the primary defence mechanism employed to dissipate this excess energy. Recently, we developed a fluorescence-quenching analysis procedure that enables the protective effectiveness of NPQ in intact Arabidopsis leaves to be determined. However, pulse-amplitude modulation measurements do not currently allow distinguishing between PSII and PSI fluorescence levels. Failure to account for PSI contribution is suggested to lead to inaccurate measurements of NPQ and, particularly, maximum PSII yield (F v/F m). Recently, Pfündel et al. (Photosynth Res 114:189–206, 2013) proposed a method that takes into account PSI contribution in the measurements of F o fluorescence level. However, when PSI contribution was assumed to be constant throughout the induction of NPQ, we observed lower values of the measured minimum fluorescence level (\({F_{{\text{o}}_{\text{calc.}}^{^\prime }}}\)) than those calculated according to the formula of Oxborough and Baker (Photosynth Res 54:135–142 1997) (\({F_{{\text{o}}_{\text{calc.}}^{^\prime } }}\)), regardless of the light intensity. Therefore, in this work, we propose a refined model to correct for the presence of PSI fluorescence, which takes into account the previously observed NPQ in PSI. This method efficiently resolves the discrepancies between measured and calculated F o′ produced by assuming a constant PSI fluorescence contribution, whilst allowing for the correction of the maximum PSII yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adams WW, Zarter CR, Mueh KE, Amiard V, Demmig-Adams B (2006) Energy dissipation and photoinhibition: a continuum of photoprotection. In: Demmig-Adams B, Adams WW, Mattoo AK (eds) Photoprotection, photoinhibition, gene regulation, and environment. Springer, Dordrecht, pp 49–64

    Chapter  Google Scholar 

  • Aro E-M, McCaffery S, Anderson JM (1993) Photoinhibition and D1 protein degradation in peas acclimated to different growth irradiances. Plant Physiol 130:835–843

    Google Scholar 

  • Ballottari M, Alcocer MJP, D’Andrea C, Viola D, Ahn TK, Petrozza A, Polli D, Fleming GR, Cerullo G, Bassi R (2014) Regulation of photosystem I light harvesting by zeaxanthin. Proc Natl Acad Sci USA 111:E2431–E2438

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Barber J (1995) Molecular basis of the vulnerability of photosystem II to damage by light. Aust J Plant Physiol 22:201–208

    Article  CAS  Google Scholar 

  • Barber J (2002) Photosystem II: a multisubunit membrane protein that oxidises water. Curr Opin Struct Biol 12:523–530

    Article  CAS  PubMed  Google Scholar 

  • Barber J (2009) Photosynthetic energy conversion: natural and artificial. Chem Soc Rev 38:185–196

    Article  CAS  PubMed  Google Scholar 

  • Bassi R, HØyer-Hansen G, Barbato R, Giacometti GM, Simpson DJ (1987) Chlorophyll-proteins of the photosystem II antenna system. J Biol Chem 27:13333–13341

    Google Scholar 

  • Bassi R, Pineau B, Dainese P, Marquardt J (1993) Carotenoid-binding proteins of photosystem II. Eur J Biochem 212:297–303

    Article  CAS  PubMed  Google Scholar 

  • Becker B, Marin B (2009) Streptophyte algae and the origin of embryophytes. Ann Bot 103:999–1004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Belgio E, Johnson MP, Jurić S, Ruban AV (2012) Higher plant photosystem II light-harvesting antenna, not the reaction center, determines the excited state lifetime-both the maximum and the nonphotochemically quenched. Biophys J 102:2761–2771

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bellafiore S, Barneche F, Peltier G, Rochaix J-D (2005) State transitions and light adaptation require chloroplast thylakoid protein kinase STN7. Nature 433:892–895

    Article  CAS  PubMed  Google Scholar 

  • Blankenship RE (2002) Molecular mechanisms of photosynthesis. Wiley, London

    Book  Google Scholar 

  • Briantais J-M, Vemotte C, Picaud M, Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548:128–138

    Article  CAS  PubMed  Google Scholar 

  • Brooks MD, Sylak-Glassman EJ, Fleming GR, Niyogi KK (2013) A thioredoxin-like/β-propeller protein maintains the efficiency of light harvesting in Arabidopsis. Proc Natl Acad Sci USA 110:E2733–E2740

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Brugnoli E, Björkman O (1992) Chloroplast movements in leaves: Influence on chlorophyll fluorescence and measurements of light-induced absorbance changes related to ΔpH and zeaxanthin formation. Photosynth Res 32:23–35

    Article  CAS  PubMed  Google Scholar 

  • Caffarri S, Tibiletti T, Jennings RC, Santabarbara S (2014) A comparison between plant photosystem I and photosystem II architecture and functioning. Curr Protein Pept Sci 15:296–331

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dall’Osto L, Cazzaniga S, Wada M, Bassi R (2014) On the origin of a slowly reversible fluorescence decay component in the Arabidopsis npq4 mutant. Phil Trans R Soc B 369:20130221

    Article  PubMed Central  PubMed  Google Scholar 

  • Dau H (1994) Molecular mechanism and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Dekker JP, Boekema EJ (2005) Supramolecular organization of thylakoid membrane proteins in green plants. Biochim Biophys Acta 1706:12–39

    Article  CAS  PubMed  Google Scholar 

  • Demmig-Adams B (1990) Carotenoids and photoprotection: a role for the xanthophyll zeaxanthin. Biochim Biophys Acta 1020:1–24

    Article  CAS  Google Scholar 

  • Engelmann EC, Zucchelli G, Garlaschi FM, Casazza AP, Jennings RC (2005) The effect of outer antenna complexes on the photochemical trapping rate in barley thylakoid Photosystem II. Biochim Biophys Acta 1706:276–286

    Article  CAS  PubMed  Google Scholar 

  • Falkowski PG, Katz ME, Knoll AH, Quigg A, Raven JA, Schofield O, Taylor FRJ (2004) The evolution of modern phytoplankton. Science 305:354–360

    Article  CAS  PubMed  Google Scholar 

  • Farber A, Young AJ, Ruban AV, Horton P, Jahns P (1997) Dynamics of xanthophyll-cycle activity in different antenna subcomplexes in the photosynthetic membranes of higher plants: the relationship between zeaxanthin conversion and nonphotochemical fluorescence quenching. Plant Physiol 115:1609–1618

    CAS  PubMed Central  PubMed  Google Scholar 

  • Goral TK, Johnson MP, Duffy CD, Brain AP, Ruban AV, Mullineaux CW (2012) Light-harvesting antenna composition controls the macrostructure and dynamics of thylakoid membranes in Arabidopsis. Plant J 69:289–301

    Article  CAS  PubMed  Google Scholar 

  • Goss R, Lepetit B (2014) Biodiversity of NPQ. J Plant Physiol 172:13–32

    Article  PubMed  Google Scholar 

  • Holzwarth AR, Miloslavina Y, Nilkens M, Jahns P (2009) Identification of two quenching sites active in the regulation of photosynthetic light-harvesting studied by time-resolved fluorescence. Chem Phys Lett 483:262–267

    Article  CAS  Google Scholar 

  • Horton P, Ruban AV (1992) Regulation of photosystem II. Photosynth Res 34:375–385

    Article  CAS  PubMed  Google Scholar 

  • Horton P, Ruban AV (2004) Molecular design of the photosystem II light harvesting antenna: photosynthesis and photoprotection. J Exp Bot 56:365–373

    Article  PubMed  Google Scholar 

  • Horton P, Ruban AV, Wentworth M (2000) Allosteric regulation of the light harvesting system of photosystem II. Phil Trans R Soc B 355:1361–1370

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jahns P, Holzwarth AR (2012) The role of the xanthophyll cycle and of lutein in photoprotection of photosystem II. Biochim Biophys Acta 1817:182–193

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2009) Photoprotective energy dissipation in higher plants involves alteration of the excited state energy of the emitting chlorophyll(s) in the light harvesting antenna II (LHCII). J Biol Chem 284:23592–23601

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Johnson MP, Ruban AV (2010) Arabidopsis plants lacking PsbS protein possess photoprotective energy dissipation. Plant J 61:283–289

    Article  CAS  PubMed  Google Scholar 

  • Johnson MP, Goral TK, Duffy CDP, Brain APR, Mullineaux CW, Ruban AV (2011) Photoprotective energy dissipation involves the reorganization of photosystem II light harvesting complexes in the grana membranes of spinach chloroplasts. Plant Cell 23:1468–1479

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Krause GH (1988) Photoinhibition of photosynthesis. An evaluation of damaging and protective mechanisms. Physiol Plant 74:566–574

    Article  CAS  Google Scholar 

  • Krause GH, Behrend U (1986) ΔpH-dependent chlorophyll fluorescence quenching indicating a mechanism of protection against photoinhibition of chloroplasts. FEBS Lett 200:298–302

    Article  CAS  Google Scholar 

  • Krause GH, Weis E (1991) Chlorophyll fluorescence and photosynthesis: the basics. Annu Rev Plant Physiol Plant Mol Biol 42:313–349

    Article  CAS  Google Scholar 

  • Lazár D (2013) Simulations show that a small part of variable chlorophyll a fluorescence originates in photosystem I and contributes to overall fluorescence rise. J Theor Biol 335:249–264

    Article  PubMed  Google Scholar 

  • Li X-P, Björkman O, Shih C, Grossman AR, Rosenquist M, Jansson S, Niyogi KK (2000) A pigment-binding protein essential for regulation of photosynthetic light harvesting. Nature 403:391–395

    Article  CAS  PubMed  Google Scholar 

  • Miloslavina Y, de Bianchi S, Dall’Osto L, Bassi R, Holzwarth AR (2011) Quenching in Arabidopsis thaliana mutants lacking monomeric antenna proteins of photosystem II. J Biol Chem 286:36830–36840

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Moise N, Moya I (2004) Correlation between lifetime heterogeneity and kinetics heterogeneity during chlorophyll fluorescence induction in leaves: 2. Multi-frequency phase and modulation analysis evidences a loosely connected PSII pigment-protein complex. Biochim Biophys Acta 1657:47–60

    Article  CAS  PubMed  Google Scholar 

  • Müller P, Li X-P, Niyogi KK (2001) Non-photochemical quenching. A response to excess light energy. Plant Physiol 125:1558–1566

    Article  PubMed Central  PubMed  Google Scholar 

  • Nelson N (2011) Photosystems and global effects of oxygenic photosynthesis. Biochim Biophys Acta 1807:856–863

    Article  CAS  PubMed  Google Scholar 

  • Nilkens M, Kress E, Lambrev P, Miloslavina Y, Müller M, Holzwarth AR, Jahns P (2010) Identification of a slowly inducible zeaxanthin-dependent component of non-photochemical quenching of chlorophyll fluorescence generated under steady-state conditions in Arabidopsis. Biochim Biophys Acta 1797:466–475

    Article  CAS  PubMed  Google Scholar 

  • Niyogi KK, Truong TB (2013) Evolution of flexible non-photochemical quenching mechanisms that regulate light harvesting in oxygenic photosynthesis. Curr Opin Plant Biol 16:307–314

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, Ruban AV, Horton P (1993) Modulation of ΔpH-dependent nonphotochemical quenching of chlorophyll fluorescence in spinach chloroplasts. Biochim Biophys Acta 1183:339–344

    Article  CAS  Google Scholar 

  • Osmond CB (1994) What is photoinhibition? Some insights from comparisons of shade and sun plants. In: Baker NR, Bowyer JR (eds) Photoinhibition of photosynthesis. Bios Scientific, Lancaster, pp 1–24

    Google Scholar 

  • Oxborough K, Baker NR (1997) Resolving chlorophyll a fluorescence of photosynthetic efficiency into photochemical components—calculation of qP and F v′/F m′ without measuring F o′. Photosynth Res 54:135–142

    Article  CAS  Google Scholar 

  • Peterson RB, Oja V, Eichelmann H, Bichele I, Dall’Osto L, Laisk A (2014) Fluorescence F0 of photosystems II and I in developing C3 and C4 leaves, and implications on regulation of excitation balance. Photosynth Res 122:41–56

    Article  CAS  PubMed  Google Scholar 

  • Pfündel EE, Klughammer C, Meister A, Cerovic ZG (2013) Deriving fluorometer- specific values of relative PSI fluorescence intensity from quenching of F o fluorescence in leaves of Arabidopsis thaliana and Zea mays. Photosynth Res 114:189–206

    Article  PubMed  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents-verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Powles SB (1984) Photoinhibition of photosynthesis induced by visible light. Ann Rev Plant Physiol 35:15–44

    Article  CAS  Google Scholar 

  • Richter M, Goss R, Wagner B, Holzwarth AR (1999) Characterization of the fast and slow reversible components of non-photochemical quenching in isolated pea thylakoids by picosecond time-resolved chlorophyll fluorescence analysis. Biochemistry 38:12718–12726

    Article  CAS  PubMed  Google Scholar 

  • Rintamäki E, Martinsuo P, Pursiheimo S, Aro E-M (2000) Cooperative regulation of light-harvesting complex II phosphorylation via the plastoquinol and ferredoxin-thioredoxin system in chloroplasts. Proc Natl Acad Sci USA 97:11644–11649

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruban A (2012) The photosynthetic membrane: molecular mechanisms and biophysics of light harvesting. Wiley-Blackwell, Oxford

    Book  Google Scholar 

  • Ruban AV, Belgio E (2014) The relationship between maximum tolerated light intensity and photoprotective energy dissipation in the photosynthetic antenna: chloroplast gains and losses. Phil Trans R Soc B 369:20130222

    Article  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Horton P (1999) The xanthophyll cycle modulates the kinetics of nonphotochemical energy dissipation in isolated light harvesting complexes, intact chloroplasts and leaves. Plant Physiol 119:531–542

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Murchie EH (2012) Assessing the photoprotective effectiveness of non-photochemical chlorophyll fluorescence quenching: a new approach. Biochim Biophys Acta 1817:977–982

    Article  CAS  PubMed  Google Scholar 

  • Ruban AV, Rees D, Noctor GD, Young A, Horton P (1991) Long-wavelength chlorophyll species are associated with amplification of high-energy-state excitation quenching in higher plants. Biochim Biophys Acta 1059:355–360

    Article  Google Scholar 

  • Ruban AV, Young A, Horton P (1993) Induction of nonphotochemical energy dissipation and absorbance changes in leaves; evidence for changes in the state of the light harvesting system of photosystem II in vivo. Plant Physiol 102:741–750

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Young AJ, Pascal AA, Horton P (1994) The effects of illumination on the xanthophyll composition of the photosystem II light harvesting complexes of spinach thylakoid membranes. Plant Physiol 104:227–234

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ruban AV, Johnson MP, Duffy CDP (2012) The photoprotective molecular switch in the photosystem II antenna. Biochim Biophys Acta 1817:167–181

    Article  CAS  PubMed  Google Scholar 

  • Sylak-Glassman EJ, Malnoë A, De Re E, Brooks MD, Fischer AL, Niyogi KK, Fleming GR (2014) Distinct roles of the photosystem II protein PsbS and zeaxanthin in the regulation of light harvesting in plants revealed by fluorescence lifetime snapshots. Proc Natl Acad Sci USA. doi:10.1073/pnas.1418317111

    PubMed Central  PubMed  Google Scholar 

  • Tikkanen M, Piippo M, Suorsa M, Sirpio S, Mulo P, Vainonen J, Vener AV, Allahverdiyeva Y, Aro EM (2006) State transitions revisited—a buffering system for dynamic low light acclimation of Arabidopsis. Plant Mol Biol 62:779–793

    Article  PubMed  Google Scholar 

  • Triantaphylidès C, Havaux M (2009) Singlet oxygen in plants: production, detoxification and signalling. Trends Plant Sci 14:219–228

    Article  PubMed  Google Scholar 

  • Trissl HW, Gao Y, Wulf K (1993) Theoretical fluorescence induction curves derived from coupled differential equations describing the primary photochemistry of photosystem II by an exciton-radical pair equilibrium. Biophys J 64:974–988

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Tyystjärvi E, Aro EM (1996) The rate constant of photoinhibition, measured in lincomycin-treated leaves, is directly proportional to light intensity. Proc Natl Acad Sci USA 93:2213–2218

    Article  PubMed Central  PubMed  Google Scholar 

  • van Amerongen H, van Grondelle R (2001) Understanding the energy transfer function of LHCII, the major light-harvesting complex of green plants. J Phys Chem B 105:604–617

    Article  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the photosystem II complex. Biochim Biophys Acta 1817:209–217

    Article  CAS  PubMed  Google Scholar 

  • Wagner B, Goss R, Richter M, Wild A, Holzwarth AR (1996) Picosecond time-resolved study on the nature of high-energy-state quenching in isolated pea thylakoids. Different localization of zeaxanthin dependent and independent mechanisms. J Photochem Photobiol B Biol 36:339–350

    Article  CAS  Google Scholar 

  • Ware MA, Belgio E, Ruban AV (2014) Comparison of the protective effectiveness of NPQ in Arabidopsis plants deficient in PsbS protein and zeaxanthin. J Exp Bot. doi:10.1093/jxb/eru477

    PubMed Central  PubMed  Google Scholar 

  • Waters ER (2003) Molecular adaptation and the origin of land plants. Mol Phylogenet Evol 29:456–463

    Article  CAS  PubMed  Google Scholar 

  • Wientjes E, van Amerongen H, Croce R (2013) Quantum yield of charge separation in photosystem II: functional effect of changes in the antenna size upon light acclimation. J Phys Chem 117:11200–11208

    Article  CAS  Google Scholar 

  • Yamamoto HY (1979) Biochemistry of the violaxanthin cycle in higher plants. Pure Appl Chem 51:639–648

    Article  CAS  Google Scholar 

  • Yamamoto HY, Kamite L (1972) The effects of dithiothreitol on violaxanthin de-epoxidation and absorbance changes in the 500-nm region. Biochim Biophys Acta 267:538–543

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr Christopher Duffy for the critical reading of the manuscript, and Dr Erica Belgio for helpful discussions. This work was supported by the UK Biotechnology and Biological Sciences Research Council and The Leverhulme Trust to AVR and Queen Mary Principal’s research studentship to MAW.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ruban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 192 kb)Calculation of the PSI fluorescence contribution

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giovagnetti, V., Ware, M.A. & Ruban, A.V. Assessment of the impact of photosystem I chlorophyll fluorescence on the pulse-amplitude modulated quenching analysis in leaves of Arabidopsis thaliana . Photosynth Res 125, 179–189 (2015). https://doi.org/10.1007/s11120-015-0087-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-015-0087-z

Keywords

Navigation