Skip to main content
Log in

Spectral exhibition of electron-vibrational relaxation in P* state of Rhodobacter sphaeroides reaction centers

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Electron-vibrational relaxation in the excited state of the primary electron donor, bacteriochlorophyll dimer P, in the reaction centers (RCs) of purple photosynthetic bacteria Rhodobacter sphaeroides is modeled. A multimode model of three states (i.e., the ground state Pg, initially excited P1*, and relaxed excited P2*) is used to calculate the incoherent dynamics of the difference (ΔA) spectra on a femtosecond timescale for the YM210 W mutant RCs. The relaxation processes are described by the step-ladder model. The model shows that the electron-vibrational relaxation in the excited state of P is visualized by the transient red shift of the stimulated emission from P*. The dynamics of this shift is observed as a change in the ΔA spectrum shape in its red-most part, within a few hundreds of femtoseconds after excitation. As a result, an initial rise in the red-side ΔA kinetics is delayed with respect to the blue-side kinetics. The time constant of the P1* → P2* electronic relaxation (54 fs) and the Pg, P1*, and P2* vibrational relaxations (120 fs), used in the model, provided the best fit of the experimental time-resolved ΔA spectra and kinetics at 90 and 293 K. The possible nature of the P1* → P2* electronic relaxation is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Ando K, Sumi H (1998) Nonequilibrium oscillatory electron transfer in bacterial photosynthesis. J Phys Chem B 102:10991–11000

    Article  CAS  Google Scholar 

  • Arnett DC, Moser CC, Dutton PL, Scherer NF (1999) The first events in photosynthesis: electronic coupling and energy transfer dynamics in the photosynthetic reaction center from Rhodobacter sphaeroides. J Phys Chem B 103:2014–2032

    Article  CAS  Google Scholar 

  • Becker MV, Nagarajan V, Parson WW (1991) Propeties of the excited-singlet states of bacteriochlorophyll a and bacteriopheophytin a in polar solvents. J Am Chem Soc 113:6840–6848

    Article  CAS  Google Scholar 

  • Cherepanov DA, Krishtalik LI, Mulkidjanian AY (2001) Photosynthetic electron transfer controlled by protein relaxation: analysis by Langevin stochastic approach. Biophys J 80:1033–1049

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Cherepy NJ, Shreve AP, Moore LJ, Franzen S, Boxer SG, Mathies RA (1994) Near-infrared resonance Raman spectroscopy of the special pair and the accessory bacteriochlorophylls in photosynthetic reaction centers. J Phys Chem 98:6023–6029

    Article  CAS  Google Scholar 

  • Cherepy NJ, Shreve AP, Moore LJ, Boxer SG, Mathies RA (1997a) Temperature dependence of the Qy resonance Raman spectra of bacteriochlorophylls, the primary electron donor, and bacteriopheophytins in the bacterial photosynthetic reaction center. Biochemistry 36:8559–8566

    Article  CAS  PubMed  Google Scholar 

  • Cherepy NJ, Shreve AP, Moore LJ, Boxer SG, Mathies RA (1997b) Electronic and nuclear dynamics of the accessory bacteriochlorophylls in bacterial photosynthetic reaction centers from resonance Raman intensities. J Phys Chem B 101:3250–3260

    Article  CAS  Google Scholar 

  • Dong L-Q, Niu K, Cong S-L (2007) Theoretical analysis of internal conversion pathways and vibrational relaxation process of chlorophyll-a in ethyl ether solvent. Chem Phys Lett 440:150–154

    Article  CAS  Google Scholar 

  • Eisenmayer TJ, de Groot HJM, van de Wetering E, Neugebauer J, Buda F (2012) Mechanism and reaction coordinate of directional charge separation in bacterial reaction centers. J Phys Chem Lett 3:694–697

    Article  CAS  Google Scholar 

  • Eisenmayer TJ, Lasave JA, Monti A, de Groot HJM, Buda F (2013) Proton displacements coupled to primary electron transfer in the Rhodobacter sphaeroides reaction center. J Phys Chem B 117:11162–11168

    Article  CAS  PubMed  Google Scholar 

  • Fain B, Lin SH, Hamer NJ (1989) Two-dimensional spectroscopy: theory of nonstationary, time-dependent absorption and its application to femtosecond processes. J Chem Phys 91:4485–4494

    Article  CAS  Google Scholar 

  • Glebov IO, Eremin VV (2008) The influence of dissipation on vibrational dynamics in a system of two interacting electronic states. Russian J Phys Chem A 82:586–591

    CAS  Google Scholar 

  • Gu XZ, Hayashi M, Suzuki S, Lin SH (1995) Vibrational coherence and relaxation dynamics in the primary donor state of the mutant reaction center of Rhodobacter capsulatus: theoretical analysis of pump-probe stimulated emission. Biochim Biophys Acta 1229:215–224

    Article  Google Scholar 

  • Hamm P, Zinth W (1995) Ultrafast initial reaction in bacterial photosynthesis revealed by femtosecond infrared spectroscopy. J Phys Chem 99:13537–13544

    Article  CAS  Google Scholar 

  • Hamm P, Gray KA, Oesterhelt D, Feik R, Scheer H, Zinth W (1993) Subpicosecond emission studies of bacterial reaction centers. Biochim Biophys Acta 1142:90–105

    Google Scholar 

  • Hong X, Zhang R-B, Ma S-H, Zheng-Wang Q, Zhang X-K, Zhang Q-Y (2002) Theoretical studies on the mechanism of primary electron transfer in the photosynthetic reaction center of Rhodobacter sphaeroides. Photosynth Res 74:11–36

    Article  Google Scholar 

  • Jean JM (1994) Time- and frequency-resolved spontaneous emission as a probe of coherence effects in ultrafast electron transfer reactions. J Chem Phys 101:10464–10473

    Article  CAS  Google Scholar 

  • Jean JM, Fleming GR (1995) Competition between energy and phase relaxation in electronic curve crossing processes. J Chem Phys 103:2092–2101

    Article  CAS  Google Scholar 

  • Jean JM, Friesner RA, Fleming GR (1992) Application of a multilevel Redfield theory to electron transfer in condensed phases. J Chem Phys 96:5827–5842

    Article  CAS  Google Scholar 

  • Jones MR, Heer-Dawson M, Mattioli TA, Hunter CN, Robert B (1994) Site-specific mutagenesis of the reaction centre from Rhodobacter sphaeroides studied by Fourier transform Raman spectroscopy: mutations at tyrosine M210 do not affect the electronic structure of the primary donor. FEBS Lett 339:18–24

    Article  CAS  PubMed  Google Scholar 

  • Khatypov RA, Khmelnitskiy AYu, Khristin AM, Fufina TYu, Vasilieva LG, Shuvalov VA (2012) Primary charge separation within P870* in wild type and heterodimer mutants in femtosecond time domain. Biochim Biophys Acta 1817:1392–1398

    Article  CAS  PubMed  Google Scholar 

  • Klevanik AV, Ganago AO, Shkuropatov AYa, Shuvalov VA (1988) Electron-phonon and vibronic structure of absorption spectra of the primary electron donor in reaction centers of Rhodopseudomonas viridis, Rhodobacter sphaeroides and Chloroflexus aurantiacus at 1.7-70 K. FEBS Lett 237:61–64

    Article  CAS  Google Scholar 

  • Kundu P, Dua A (2013) Protein dynamics modulated electron transfer kinetics in early stage photosynthesis. J Chem Phys 138(045104):1–9

    Google Scholar 

  • Lathrop EJP, Friesner RA (1994) Vibronic mixing in the strong electronic coupling limit. Spectroscopic effects of forbidden transitions. J Phys Chem 98:3050–3055

    Article  CAS  Google Scholar 

  • Leegwater JA (1995) Theory of coherent oscillations in the photosynthetic reaction center. J Phys Chem 99:11605–11611

    Article  CAS  Google Scholar 

  • Lin SH (1974) On the master equation approach of vibrational relaxation in condensed media. J Chem Phys 61:3810–3820

    Article  CAS  Google Scholar 

  • Lin SH, Hayashi M, Suzuki S, Gu X, Xiao W, Sugawara M (1995) Theoretical analyses on femtosecond time-resolved spectra of initial electron transfer of photosynthetic reaction centers at low temperatures. Chem Phys 197:435–455

    Article  CAS  Google Scholar 

  • Lockhart DJ, Boxer SG (1987) Magnitude and direction of the change in dipole moment associated with excitation of the primary electron donor in Rhodopseudomonas sphaeroides reaction centers. Biochemistry 26:664–668

    Article  CAS  Google Scholar 

  • Lyle PA, Kolaczkowski SV, Small GJ (1993) Photochemical hole-burned spectra of protonated and deuterated reaction centers of Rhodobacter sphaeroides. J Phys Chem 97:6924–6933

    Article  CAS  Google Scholar 

  • Marcus RA (1956) On the theory of oxidation-reduction reactions involving electron-transfer. I. J Chem Phys 24:966–978

    Article  CAS  Google Scholar 

  • Marcus RA (1964) Chemical and electrochemical electron transfer theory. Ann Rev Phys Chem 15:155–196

    Article  CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfer in chemistry and biology. Biochim Biophys Acta 811:265–322

    Article  CAS  Google Scholar 

  • McAuley KE, Fyfe PK, Cogdell RJ, Isaacs NW, Jones MR (2000) X-ray crystal structure of the YM210 W mutant reaction centre from Rhodobacter sphaeroides. FEBS Lett 467:285–290

    Article  CAS  PubMed  Google Scholar 

  • Meech SR, Hoff AJ, Wiersma DA (1986) Role of charge-transfer states in bacterial photosynthesis. Proc Natl Acad Sci USA 83:9464–9468

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Müh F, Rautter J, Lubitz W (1997) Two distinct conformations of the primary electron donor in reaction centers from Rhodobacter sphaeroides revealed by ENDOR/TRIPLE-spectroscopy. Biochemistry 36:4155–4162

    Article  PubMed  Google Scholar 

  • Nagarajan V, Parson WW, Davis D, Schenck CC (1993) Kinetics and free energy gaps of electron-transfer reactions in Rhodobacter sphaeroides reaction centers. Biochemistry 32:12324–12336

    Article  CAS  PubMed  Google Scholar 

  • Novoderezhkin VI, Dekker JP, Van Grondelle R (2007) Mixing of exciton and charge-transfer states in photosystem II reaction centers: modeling of Stark spectra with modified Redfield theory. Biophys J 93:1293–1311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Novoderezhkin VI, Romero E, Dekker JP, Van Grondelle R (2011) Multiple charge-separation pathways in photosystem II: modeling of transient absorption kinetics. Chem Phys Chem 12:681–688

    CAS  PubMed  Google Scholar 

  • Parker CA (1968) Photoluminescence of solutions. Elsevier, Amsterdam

    Google Scholar 

  • Parson WW, Warshel A (1987) Spectroscopic properties of photosynthetic reaction centers. 2. Application of the theory to Rhodopseudomonas viridis. J Am Chem Soc 109:6152–6163

    Article  CAS  Google Scholar 

  • Parson WW, Warshel A (2004a) A density-matrix model of photosynthetic electron transfer with microscopically estimated vibrational relaxation times. Chem Phys 296:201–206

    Article  CAS  Google Scholar 

  • Parson WW, Warshel A (2004b) Dependence of photosynthetic electron-transfer kinetics on temperature and energy in a density-matrix model. J Phys Chem B 108:10474–10483

    Article  CAS  Google Scholar 

  • Parson WW, Warshel A (2009) Mechanism of charge separation in purple bacterial reaction centers. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) The purple phototrophic bacteria. Springer Science + Business Media BV, Dordreht, pp 355–377

    Chapter  Google Scholar 

  • Pavlovich VS (2006) Model for primary electron transfer and coupling of electronic states at reaction centers of purple bacteria. J Appl Spectrosc 73:328–339

    Article  CAS  Google Scholar 

  • Philipson KD, Sauer K (1973) Comparative study of the circular dichroism spectra of reaction centers from several photosynthetic bacteria. Biochemistry 12:535–539

    Article  CAS  PubMed  Google Scholar 

  • Plato M, Lendzian F, Lubitz W, Möbius K (1992) Molecular orbital study of electronic asymmetry in primary donors of bacterial reaction centers. In: Breton J, Verméglio A (eds) The photosynthetic bacterial reaction center II: structure, spectroscopy, and dynamics. Plenum, New York, pp 109–118

    Chapter  Google Scholar 

  • Reddy NRS, Kolaczkowski SV, Small GJ (1993) Nonphotochemical hole burning of the reaction center of Rhodopseudomonas viridis. J Phys Chem 97:6934–6940. doi:10.1021/j100128a031

    Article  CAS  Google Scholar 

  • Redfield AG (1965) The theory of relaxation processes. In: Waugh JS (ed) Advances in magnetic resonance, vol 1. Acad. Press, New York, pp 1–32

    Chapter  Google Scholar 

  • Renger T (2004) Theory of optical spectra involving charge transfer states: dynamic localization predicts a temperature dependent optical band shift. Phys Rev Lett 93(18):188101 1–4

  • Rischel C, Spiedel D, Ridge JP, Jones MR, Breton J, Lambry JC, Martin J-L, Vos MH (1998) Low frequency vibrational modes in proteins: changes induced by point-mutations in the protein-cofactor matrix of bacterial reaction centers. Proc Natl Acad Sci USA 95:12306–12311

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Scherer POJ, Fischer SF (1989) Quantum treatment of the optical spectra and the initial electron transfer process wiyhin the reaction center of Rhodopseudomonas viridis. Chem Phys 131:115–127

    Article  CAS  Google Scholar 

  • Shuvalov VA (2000) Primary light energy conversion in reaction centers of photosynthesis. Nauka, Moscow (in Russian)

    Google Scholar 

  • Stanley RJ, Boxer SG (1995) Oscillations in spontaneous fluorescence from photosynthetic reaction centers. J Phys Chem 99:859–863

    Article  CAS  Google Scholar 

  • Streltsov AM, Vulto SIE, Shkuropatov AYa, Hoff AJ, Aartsma TJ, Shuvalov VA (1998) BA and BB absorbance perturbations induced by coherent nuclear motions in reaction centers from Rhodobacter sphaeroides upon 30-femtosecond excitation of the primary donor. J Phys Chem B 102:7293–7298

    Article  CAS  Google Scholar 

  • Struve WS (1995) Vibrational equilibration in absorption difference spectra of chlorophyll a. Biophys J 69:2739–2744

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugawara M, Hayashi M, Suzuki S, Lin SH (1996) Theoretical wave packet study on pump-probe stimulated emission signals from electron transfer systems in condensed phases. Mol Phys 87(3):637–650

    Article  CAS  Google Scholar 

  • Sumi H, Marcus RA (1986) Dielectric relaxation and intramolecular electron transfers. J Chem Phys 84:4272–4276

    Article  CAS  Google Scholar 

  • Thompson MA, Zerner MC, Fajer J (1990) Electronic structure of bacteriochlorophyll dimmers. 1 Bacteriochlorin models. J Phys Chem 94:3820–3828

    Article  CAS  Google Scholar 

  • Treutlein H, Schulten K, Brünger A, Karplus M, Deisenhofer J, Michel H (1992) Chromophore-protein interactions and the function of the photosynthetic reaction center: a molecular dynamics study. Proc Natl Acad Sci USA 89:75–79

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Van Brederode ME, van Grondelle R (1999) New and unexpected routes for ultrafast electron transfer in photosynthetic reaction centers. FEBS Lett 455:1–7

    Article  PubMed  Google Scholar 

  • Vasilieva LG, Bolgarina TI, Khatypov RA, Shkuropatov AYa, Miyake J, Shuvalov VA (2001) Substitution of valine-157 by tyrosine in the L-subunit of the Rhodobacter sphaeroides reaction center. Dokl Biochem Biophys 376:46–49

    Article  Google Scholar 

  • Vos MH, Jones MR, Hunter CN, Breton J, Lambry J-C, Martin J-L (1994a) Coherent dynamics during the primary electron-transfer reaction in membrane-bound reaction centers of Rhodobacter sphaeroides. Biochemistry 33:6750–6757

    Article  CAS  PubMed  Google Scholar 

  • Vos MH, Jones MR, Hunter CN, Breton J, Martin J-L (1994b) Coherent nuclear dynamics at room temperature in bacterial reaction centers. Proc Nat. Acad Sci USA 91:12701–12705

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Vos MH, Jones MR, Breton J, Lambry JC, Martin J-L (1996) Vibrational dephasing of long- and short-lived primary donor excited states in mutant reaction centers of Rhodobacter sphaeroides. Biochemistry 35:2687–2692

    Article  CAS  PubMed  Google Scholar 

  • Vos MH, Jones MR, Martin J-L (1998) Vibrational coherence in bacterial reaction centers: spectroscopic characterisation of motions active during primary electron transfer. Chem Phys 233:179–190

    Article  CAS  Google Scholar 

  • Warshel A, Parson WW (1987) Spectroscopic properties of photosynthetic reaction centers. 1 Theory. J Am Chem Soc 109:6143–6152

    Article  CAS  Google Scholar 

  • Westenhoff S, Palecek D, Edlund P, Smith P, Zigmantas D (2012) Coherent picoseconds exciton dynamics in a photosynthetic reaction center. J Am Chem Soc 134:16484–16487

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev AG (2013) Primary photosynthesis. Lambert Academic Publ, Saarbrücken (in Russian)

    Google Scholar 

  • Yakovlev AG, Shkuropatov AYa, Shuvalov VA (2002a) Nuclear wavepacket motion between P* and P+B A potential surfaces with a subsequent electron transfer to HA in bacterial reaction centers at 90 K. Electron transfer pathway. Biochemistry 41:14019–14027

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev AG, Shkuropatov AYa, Shuvalov VA (2002b) Nuclear wavepacket motion between P* and P+B A potential surfaces with a subsequent electron transfer to HA in bacterial reaction centers. 1. Room temperature. Biochemistry 41:2667–2674

    Article  CAS  PubMed  Google Scholar 

  • Yakovlev AG, Vasilieva LG, Shkuropatov AYa, Bolgarina TI, Shkuropatova VA, Shuvalov VA (2003) Mechanism of charge separation and stabilization of separated charges in reaction centers of Chloroflexus aurantiacus and of YM210 W(L) mutants of Rhodobacter sphaeroides excited by 20 fs pulses at 90 K. J Phys Chem A 107:8330–8338

    Article  CAS  Google Scholar 

  • Zhou H, Boxer SG (1997) Charge resonance effects on electronic absorption line shapes: application to the heterodimer absorption of bacterial photosynthetic reaction centers. J Phys Chem B 101:5759–5766

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Dr. L. G. Vasilieva and Dr. A. Ya. Shkuropatov, who helped to prepare the RC samples. This work is partly supported by the Russian Foundation for Basic Research (Grant No 14-04-00295a).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrei G. Yakovlev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yakovlev, A.G., Shuvalov, V.A. Spectral exhibition of electron-vibrational relaxation in P* state of Rhodobacter sphaeroides reaction centers. Photosynth Res 125, 9–22 (2015). https://doi.org/10.1007/s11120-014-0041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-014-0041-5

Keywords

Navigation