Skip to main content
Log in

Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Improving Rubisco catalysis is considered a promising way to enhance C3-photosynthesis and photosynthetic water use efficiency (WUE) provided the introduced changes have little or no impact on other processes affecting photosynthesis such as leaf photochemistry or leaf CO2 diffusion conductances. However, the extent to which the factors affecting photosynthetic capacity are co-regulated is unclear. The aim of the present study was to characterize the photochemistry and CO2 transport processes in the leaves of three transplantomic tobacco genotypes expressing hybrid Rubisco isoforms comprising different Flaveria L-subunits that show variations in catalysis and differing trade-offs between the amount of Rubisco and its activation state. Stomatal conductance (g s) in each transplantomic tobacco line matched wild-type, while their photochemistry showed co-regulation with the variations in Rubisco catalysis. A tight co-regulation was observed between Rubisco activity and mesophyll conductance (g m) that was independent of g s thus producing plants with varying g m/g s ratios. Since the g m/g s ratio has been shown to positively correlate with intrinsic WUE, the present results suggest that altering photosynthesis by modifying Rubisco catalysis may also be useful for targeting WUE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth EA, Bush DR (2011) Carbohydrate export from the leaf: a highly regulated process and target to enhance photosynthesis and productivity. Plant Physiol 155:64–69

    Article  PubMed  CAS  Google Scholar 

  • Alonso H, Blayney MJ, Beck JL, Whitney SM (2009) Substrate induced assembly of Methanococcoides burtonii d-ribulose-1,5-bisphosphate carboxylase/oxygenase dimers into decamers. J Biol Chem 284:33876–33882

    Article  PubMed  CAS  Google Scholar 

  • Avni A, Edelman M, Rachailovich I, Aviv D, Fluhr R (1989) A point mutation in the gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase affects holoenzyme assembly in Nicotiana tabacum. EMBO J 8:1915–1918

    PubMed  CAS  Google Scholar 

  • Baker RT, Catanzariti AM, Karunasekara Y, Soboleva TA, Sharwood R, Whitney SM, Board PG (2005) Using deubiquitinylating enzymes as research tools. In: Deshaies RJ (ed) Ubiquitin and protein degradation. Part A. Methods in enzymology. Academic Press, Pasadena, pp 540–554

    Chapter  Google Scholar 

  • Barbour M, Warren CR, Farquhar GD, Forrester G, Brown H (2010) Variability in mesophyll conductance between barley genotypes, and effects on transpiration efficiency and carbon isotope discrimination. Plant Cell Environ 33:1176–1185

    PubMed  Google Scholar 

  • Baroli I, Price GD, Badger MR, von Caemmerer S (2008) The contribution of photosynthesis to the red light response of stomatal conductance. Plant Physiol 146:737–747

    Article  PubMed  CAS  Google Scholar 

  • Blayney M, Whitney SM, Beck J (2011) Nano-ESI mass spectrometry of Rubisco and Rubisco activase structures and their interactions with nucleotides and sugar phosphates. J Am Soc Mass Spectrom 22:1588–1601

    Article  PubMed  CAS  Google Scholar 

  • Cen Y-P, Sage RF (2006) The regulation of Rubisco activity to variation in temperature and atmospheric CO2 partial pressure in sweet potato. Plant Physiol 139:979–990

    Article  Google Scholar 

  • Eichelmann H, Talts E, Oja V, Padu E, Laisk A (2009) Rubisco in planta k cat is regulated in balance with photosynthetic electron transport. J Exp Bot 60:4077–4088

    Article  PubMed  CAS  Google Scholar 

  • Evans JR, von Caemmerer S (2012) Temperature response of carbon isotope discrimination and mesophyll conductance in tobacco. Plant Cell Environ. doi:10.1111/j.1365-3040.2012.02591.x

    Google Scholar 

  • Evans JR, von Caemmerer S, Setchell BA, Hudson GS (1994) The relationship between CO2 transfer conductance and leaf anatomy in transgenic tobacco with a reduced content of Rubisco. Aust J Plant Physiol 21:475–495

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Hanson DT, Bota J, Otto B, Cifre J, McDowell N, Medrano H, Kaldenhoff R (2006) Tobacco aquaporin NtAQP1 is involved in mesophyll conductance to CO2 in vivo. Plant J 48:427–439

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2007) Rapid variations of mesophyll conductance in response to changes in CO2 concentration around leaves. Plant Cell Environ 30:1284–1298

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Ribas-Carbó M, Díaz-Espejo A, Galmés J, Medrano H (2008) Mesophyll conductance to CO2: current knowledge and future prospects. Plant Cell Environ 31:602–631

    Article  PubMed  CAS  Google Scholar 

  • Flexas J, Galmés J, Gallé A, Gulías J, Pou A, Ribas-Carbó M, Tomàs M, Medrano H (2010) Improving water use efficiency in grapevines: potential physiological targets for biotechnological improvement. Aust J Grape Wine Res 16:106–121

    Article  CAS  Google Scholar 

  • Flexas J, Barbour MM, Brendel O, Cabrera HM, Carriquí M, Díaz-Espejo A, Douthe C, Dreyer E, Ferrio JP, Gago J, Gallé A, Galmés J, Kodama N, Medrano H, Niinemets U, Peguero-Pina JJ, Pou A, Ribas-Carbó M, Tomás M, Tosens T, Warren CR (2012) Mesophyll diffusion conductance to CO2: an unappreciated central player in photosynthesis. Plant Sci 193–194:73–84

    Google Scholar 

  • Foyer C, Furbank R, Harbinson J, Horton P (1990) The mechanisms contributing to photosynthetic control of electron transport by assimilation in leaves. Photosynth Res 25:83–100

    Article  CAS  Google Scholar 

  • Furbank RT, Chitty JA, von Caemmerer S, Jenkins CLD (1996) Antisense RNA inhibition of rbcS gene expression reduces Rubisco level and photosynthesis in the C4 plant Flaveria bidentis. Plant Physiol 111:725–734

    PubMed  CAS  Google Scholar 

  • Gallé A, Florez-Sarasa ID, Tomas M, Medrano H, Ribas-Carbó M, Flexas J (2009) The role of mesophyll conductance during water stress and recovery in tobacco (Nicotiana sylvestris): acclimation or limitation? J Exp Bot 60:2379–2390

    Article  PubMed  Google Scholar 

  • Galmés J, Flexas J, Keys AJ, Cifre J, Mitchell RAC, Madgwick PJ, Haslam RP, Medrano H, Parry MAJ (2005) Rubisco specificity factor tends to be larger in plant species from drier habitats and in species with persistent leaves. Plant Cell Environ 28:571–579

    Article  Google Scholar 

  • Galmés J, Medrano H, Flexas J (2007) Photosynthetic limitations in response to water stress and recovery in Mediterranean plants with different growth forms. New Phytol 175:81–93

    Article  PubMed  Google Scholar 

  • Galmés J, Conesa MA, Ochogavía JM, Perdomo JA, Francis D, Ribas-Carbó M, Savé R, Flexas J, Medrano H, Cifre J (2011) Physiological and morphological adaptations in relation to water use efficiency in Mediterranean accessions of Solanum lycopersicum. Plant Cell Environ 34:245–260

    Article  PubMed  Google Scholar 

  • Genty B, Briantais JM, Baker NR (1989) The relationship between the quantum yield of photosynthetic electron transport and quenching of chlorophyll fluorescence. Biochim Biophys Acta 990:87–92

    Article  CAS  Google Scholar 

  • Getzoff TP, Zhu GH, Bohnert HJ, Jensen RG (1998) Chimeric Arabidopsis thaliana Rubisco containing a pea small subunit protein is compromised in carbamylation. Plant Physiol 116:695–702

    Article  PubMed  CAS  Google Scholar 

  • Grassi G, Magnani F (2005) Stomatal, mesophyll conductance and biochemical limitations to photosynthesis as affected by drought and leaf ontogeny in ash and oak trees. Plant Cell Environ 28:834–849

    Article  CAS  Google Scholar 

  • Hammond ET, Andrews TJ, Mott KA, Woodrow IE (1998) Regulation of Rubisco activation in antisense plants of tobacco containing reduced levels of Rubisco activase. Plant J 14:101–110

    Article  PubMed  CAS  Google Scholar 

  • Hanba YT, Shibasaka M, Hayashi Y, Hayakawa T, Kasamo K, Terashima I, Katsuhara M (2004) Overexpression of the barley aquaporin HvPIP2;1 increases internal CO2 conductance and CO2 assimilation in the leaves of transgenic rice plants. Plant Cell Physiol 45:521–529

    Article  PubMed  CAS  Google Scholar 

  • Harley PC, Loreto F, Di Marco G, Sharkey TD (1992) Theoretical considerations when estimating the mesophyll conductance to CO2 flux by the analysis of the response of photosynthesis to CO2. Plant Physiol 98:1429–1436

    Article  PubMed  CAS  Google Scholar 

  • He Z, von Caemmerer S, Hudson GS, Price GD, Badger MR, Andrews TJ (1997) Ribulose-l,5-bisphosphate carboxylase/oxygenase activase deficiency delays senescence of ribulose-l,5-bisphosphate carboxylase/oxygenase but progressively impairs its catalysis during tobacco leaf development. Plant Physiol 115:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson L, Sharwood R, Ludwig M, Whitney SM, Badger MR, von Caemmerer S (2008) The effects of Rubisco activase on C4 photosynthesis and metabolism at high temperature. J Exp Bot 59:1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Hoagland DR, Snyder WC (1933) Nutrition of strawberry plants under controlled conditions: (a) effects of deficiencies of boron and certain other elements; (b) susceptibility to injury from sodium salts. Proc Am Soc Hortic Sci 30:288–294

    Google Scholar 

  • Hudson GS, Evans JR, von Caemmerer S, Arvidsson YBC, Andrews TJ (1992) Reduction of ribulose-1,5-bisphosphate carboxylase/oxygenase content by antisense RNA reduces photosynthesis in transgenic tobacco plants. Plant Physiol 98:294–302

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa C, Hatanaka T, Misoo S, Miyake C, Fukayama H (2011) Functional incorporation of sorghum small subunit increases the catalytic turnover rate of Rubisco in transgenic rice. Plant Physiol 156:1603–1611

    Article  PubMed  CAS  Google Scholar 

  • Kaldenhoff R (2012) Mechanisms underlying CO2 diffusion in leaves. Curr Opin Plant Biol 15:276–281

    Article  PubMed  CAS  Google Scholar 

  • Kanevski I, Maliga P, Rhoades DF, Gutteridge S (1999) Plastome engineering of ribulose-1,5-bisphosphate carboxylase/oxygenase in tobacco to form a sunflower large subunit and tobacco small subunit hybrid. Plant Physiol 119:133–141

    Article  PubMed  CAS  Google Scholar 

  • Kebeish R, Niessen M, Thiruveedhi K, Bari R, Hirsch H-J, Rosenkranz R, Stäbler N, Schönfeld B, Kreuzaler F, Peterhänsel C (2007) Chloroplastic photorespiratory bypass increases photosynthesis and biomass production in Arabidopsis thaliana. Nature 25:593–599

    Article  CAS  Google Scholar 

  • Lefebvre S, Lawson T, Zakhleniuk OV, Lloyd JC, Raines CA (2005) Increased sedoheptulose-1,7-bisphosphatase activity in transgenic tobacco plants stimulates photosynthesis and growth from an early stage in development. Plant Physiol 138:451–460

    Article  PubMed  CAS  Google Scholar 

  • Makino A, Sage RF (2007) Temperature response of photosynthesis in transgenic rice transformed with ‘sense’ or ‘antisense’ rbcS. Plant Cell Physiol 48:1472–1483

    Article  PubMed  CAS  Google Scholar 

  • Ogren WL, Bowes G (1971) Ribulose diphosphate carboxylase regulates soybean photorespiration. Nature 230:159–160

    CAS  Google Scholar 

  • Parry MAJ, Keys AJ, Madgwick PJ, Carmo-Silva E, Andralojc J (2008) Rubisco regulation: a role for inhibitors. J Exp Bot 59:1569–1580

    Article  PubMed  CAS  Google Scholar 

  • Parry MAJ, Andralojc PJ, Scales JC, Salvucci ME, Carmo-Silva AE, Alonso H, Whitney SM (2013) Rubisco activity and regulation as targets for crop improvement. J Exp Bot 64:717–730

    Article  PubMed  CAS  Google Scholar 

  • Peterhansel C, Maurino VG (2011) Photorespiration redesigned. Plant Physiol 155:49–55

    Article  PubMed  CAS  Google Scholar 

  • Pierce J, Tolbert NE, Barker R (1980) Interaction of ribulosebisphosphate carboxylase/oxygenase with transition-state analogues. Biochemistry 19:934–942

    Article  PubMed  CAS  Google Scholar 

  • Poorter H, Niinemets Ü, Poorter L, Wright IJ, Villar R (2009) Caused and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol 182:565–588

    Article  PubMed  Google Scholar 

  • Price DG, von Caemmerer S, Evans JR, Yu JW, Lloyd J, Oja V, Kell P, Harrison K, Gallagher A, Badger M (1994) Specific reduction of chloroplast carbonic anhydrase activity by antisense RNA in transgenic tobacco plants has a minor effect on photosynthetic CO2 assimilation. Planta 193:331–340

    Article  CAS  Google Scholar 

  • Price DG, Badger MR, von Caemmerer S (2011) The prospect of using cyanobacterial bicarbonate transporters to improve leaf photosynthesis in C3 crop plants. Plant Physiol 155:20–26

    Article  PubMed  CAS  Google Scholar 

  • Quick WP, Schurr U, Scheibe R, Schulze E-D, Rodermel SR, Bogorad L, Stitt M (1991) Decreased ribulose-1,5-bisphosphate carboxylase–oxygenase in transgenic tobacco transformed with ‘antisense’ rbcS. I. Impact on photosynthesis in ambient growth conditions. Planta 183:542–554

    Article  CAS  Google Scholar 

  • Raines CA (2011) Increasing photosynthetic carbon assimilation in C3 plants to improve crop yield: current and future strategies. Plant Physiol 155:36–42

    Article  PubMed  CAS  Google Scholar 

  • Ruuska S, Andrews TJ, Badger MR, Hudson GS, Laisk A, Price DG, von Caemmerer S (1998) The interplay between limiting processes in C3 photosynthesis studied by rapid-response gas exchange using transgenic tobacco impaired in photosynthesis. Aust J Plant Physiol 25:859–870

    Article  CAS  Google Scholar 

  • Ruuska SA, Badger MR, Andrews TJ, von Caemmerer S (2000) Photosynthetic electron sinks in transgenic tobacco with reduced amounts of Rubisco: little evidence for significant Mehler reaction. J Exp Bot 51:357–368

    Article  PubMed  CAS  Google Scholar 

  • Sage RF (2002) Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD (1998) Photosynthetic carbon reduction. In: Raghavendra AS (ed) Photosynthesis: a comprehensive treatise. Cambridge University Press, Cambridge, pp 111–122

    Google Scholar 

  • Sharwood RE, Whitney SM (2010) Engineering the sunflower Rubisco subunits into tobacco chloroplasts: new considerations, Chap. 19. In: Rebeiz CA (ed) The chloroplast: advances in photosynthesis and respiration, vol 31. Springer, Dordrecht, pp 285–306

  • Sharwood RE, von Caemmerer S, Maliga P, Whitney SM (2008) The catalytic properties of hybrid Rubisco comprising tobacco small and sunflower large subunits mirror the kinetically equivalent source Rubiscos and can support tobacco growth. Plant Physiol 146:83–96

    Article  PubMed  CAS  Google Scholar 

  • Shikanai T, Foyer CH, Dulieu H, Parry MAJ, Yokota A (1996) A point mutation in the gene encoding the Rubisco large subunit interferes with holoenzyme assembly. Plant Mol Biol 31:399–403

    Article  PubMed  CAS  Google Scholar 

  • Stotz M, Mueller-Cajar O, Ciniawsky S, Wendler P, Ulrich-Hartl F, Bracher A, Hayer-Hartl M (2011) Structure of green-type Rubisco activase from tobacco. Nat Struct Mol Biol 18:1366–1370

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Ohkubo M, Hatakeyama H, Ohashi K, Yoshizawa R, Kojima S, Hayakawa T, Yamaya T, Mae T, Makino A (2007) Increased Rubisco content in transgenic rice transformed with the ‘Sense’ rbcS gene. Plant Cell Physiol 48:626–637

    Article  PubMed  CAS  Google Scholar 

  • Suzuki Y, Miyamoto T, Yoshizawa R, Mae T, Makino A (2009) Rubisco content and photosynthesis of leaves at different positions in transgenic rice with an overexpression of rbcS. Plant Cell Environ 32:417–427

    Article  PubMed  CAS  Google Scholar 

  • Terashima I, Hanba YT, Tholen D, Niinemets U (2011) Leaf functional anatomy in relation to photosynthesis. Plant Physiol 155:108–116

    Article  PubMed  CAS  Google Scholar 

  • Tholen D, Ethier G, Genty B, Pepin S, Zhu XG (2012) Variable mesophyll conductance revisited: theoretical background and experimental implications. Plant Cell Environ 35:2087–2103

    Article  PubMed  CAS  Google Scholar 

  • Uehlein N, Otto B, Hanson DT, Fischer M, McDowell N, Kaldenhoff R (2008) Function of Nicotiana tabacum aquaporins as chloroplast gas pores challenges the concept of membrane CO2 permeability. Plant Cell 20:648–657

    Article  PubMed  CAS  Google Scholar 

  • Valentini R, Epron D, De Angelis P, Matteucci G, Dreyer E (1995) In situ estimation of net CO2 assimilation, photosynthetic electron flow and photorespiration in Turkey oak (Quercus cerris L.) leaves: diurnal cycles under different levels of water supply. Plant Cell Environ 18:631–640

    Article  CAS  Google Scholar 

  • Varone L, Ribas-Carbó M, Cardona C, Gallé A, Medrano H, Gratani L, Flexas J (2012) Stomatal and non-stomatal limitations to photosynthesis in seedlings and samplings of Mediterranean species pre-conditioned and aged in nurseries: different response to water stress. Environ Exp Bot 75:235–247

    Article  CAS  Google Scholar 

  • von Caemmerer S, Evans JR, Hudson GS, Andrews TJ (1994) The kinetics of ribulose-1,5-bisphosphate carboxylase/oxygenase in vivo inferred from measurements of photosynthesis in leaves of transgenic tobacco. Planta 195:88–97

    Article  Google Scholar 

  • von Caemmerer S, Lawson T, Oxborough K, Baker NR, Andrews TJ, Raines C (2004) Stomatal conductance does not correlate with photosynthetic capacity in transgenic tobacco with reduced amounts of Rubisco. J Exp Bot 55:1157–1166

    Article  Google Scholar 

  • Wang Z-Y, Snyder GW, Easu BD, Portis AR Jr, Ogren WL (1992) Sequence dependent variation in the interaction of substrate bound ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) and Rubisco activase. Plant Physiol 100:1858–1862

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (2001) Plastome-encoded bacterial ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) supports photosynthesis and growth in tobacco. Proc Natl Acad Sci USA 98:14738–14743

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Andrews TJ (2003) Photosynthesis and growth of tobacco with a substituted bacterial Rubisco mirror the properties of the introduced enzyme. Plant Physiol 133:287–294

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Houtz RL, Alonso H (2011a) Advancing our understanding and capacity to engineer nature’s CO2-sequestering enzyme, Rubisco. Plant Physiol 155:27–35

    Article  PubMed  CAS  Google Scholar 

  • Whitney SM, Sharwood RE, Orr D, White SJ, Alonso H, Galmés J (2011b) Isoleucine 309 acts as a C4 catalytic switch that increases ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) carboxylation rate in Flaveria. Proc Natl Acad Sci USA 108:14688–14693

    Article  PubMed  CAS  Google Scholar 

  • Williams TG, Flanagan LB, Coleman JR (1996) Photosynthetic gas exchange and discrimination against 13CO2, and C18O16O in tobacco plants modified by an antisense construct to have low chloroplastic carbonic anhydrase. Plant Physiol 112:319–326

    PubMed  CAS  Google Scholar 

  • Woodrow IE, Mott KA (1989) Rate limitation of non-steady-state photosynthesis by ribulose-1,5-bisphosphate carboxylase in spinach. Aust J Plant Physiol 16:487–500

    Article  CAS  Google Scholar 

  • Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082

    Article  PubMed  CAS  Google Scholar 

  • Zhu X-G, Long SP, Ort DR (2010) Improving photosynthetic efficiency for greater yield. Annu Rev Plant Biol 61:235–261

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the ARC Fellowship Grant FT0991407 awarded to SMW and the projects AGL2009-07999 and BFU2011-23294 (Plan Nacional, Spain) awarded to JG and JF, respectively. JAP is supported by a FPI Fellowship of the Government of the Balearic Islands.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeroni Galmés.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Galmés, J., Perdomo, J.A., Flexas, J. et al. Photosynthetic characterization of Rubisco transplantomic lines reveals alterations on photochemistry and mesophyll conductance. Photosynth Res 115, 153–166 (2013). https://doi.org/10.1007/s11120-013-9848-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9848-8

Keywords

Navigation