Skip to main content
Log in

Using leaf optical properties to detect ozone effects on foliar biochemistry

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Efficient methods for accurate and meaningful high-throughput plant phenotyping are limiting the development and breeding of stress-tolerant crops. A number of emerging techniques, specifically remote sensing methods, have been identified as promising tools for plant phenotyping. These remote sensing methods can be used to accurately and rapidly relate variations in leaf optical properties with important plant characteristics, such as chemistry, morphology, and photosynthetic properties at the leaf and canopy scales. In this study, we explored the potential to utilize optical (λ = 500–2,400 nm) near-surface remote sensing reflectance spectroscopy to evaluate the effects of ozone pollution on photosynthetic capacity of soybean (Glycine max Merr.). The research was conducted at the Soybean Free Air Concentration Enrichment (SoyFACE) facility where we subjected plants to ambient (44 nL L−1) and elevated ozone (79–82 nL L−1 target) concentrations throughout the growing season. Exposure to elevated ozone resulted in a significant loss of productivity, with the ozone-treated plants displaying a ~30 % average decrease in seed yield. From leaf reflectance data, it was also clear that elevated ozone decreased leaf nitrogen and chlorophyll content as well as the photochemical reflectance index (PRI), an optical indicator of the epoxidation state of xanthophyll cycle pigments and thus physiological status. We assessed the potential to use leaf reflectance properties and partial least-squares regression (PLSR) modeling as an alternative, rapid approach to standard gas exchange for the estimation of the maximum rates of RuBP carboxylation (V c,max), an important parameter describing plant photosynthetic capacity. While we did not find a significant impact of ozone fumigation on V c,max, standardized to a reference temperature of 25 °C, the PLSR approach provided accurate and precise estimates of V c,max across ambient plots and ozone treatments (r 2 = 0.88 and RMSE = 13.4 μmol m−2 s−1) based only on the variation in leaf optical properties and despite significant variability in leaf nutritional status. The results of this study illustrate the potential for combining the phenotyping methods used here with high-throughput genotyping methods as a promising approach for elucidating the basis for ozone tolerance in sensitive crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Notes

  1. http://www.labsphere.com/products/reflectance-standards-and-targets/reflectance-targets/spectralon-targets.aspx.

References

  • Ainsworth EA, Rogers A, Leakey ADB (2008) Targets for crop biotechnology in a future high-CO2 and high-O3 world. Plant Physiol 147:13–19

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ainsworth EA, Yendrek CR, Sitch S, Collins WJ, Emberson LD (2012) The effects of tropospheric ozone on net primary productivity and implications for climate change. Annu Rev Plant Biol 63:637–661

    Article  CAS  PubMed  Google Scholar 

  • Ardia D (2009) DEoptim: differential evolution optimization in R. R package, version 1.3-3. http://CRAN.R-project.org/package=DEoptim

  • Ashmore MR (2005) Assessing the future global impacts of ozone on vegetation. Plant Cell Environ 28:949–964

    Article  CAS  Google Scholar 

  • Asner GP, Martin RE, Knapp DE, Tupayachi R, Anderson C, Carranza L, Martinez P, Houcheime M, Sinca F, Weiss P (2011) Spectroscopy of canopy chemicals in humid tropical forests. Remote Sens Environ 115:3587–3598

    Article  Google Scholar 

  • Babar MA, Reynolds MP, Van Ginkel M, Klatt AR, Raun WR, Stone ML (2006) Spectral reflectance to estimate genetic variation for in-season biomass, leaf chlorophyll and canopy temperature in wheat. Crop Sci 46:1046–1057

    Article  Google Scholar 

  • Baldocchi DD, Wilson KB (2001) Modeling CO2 and water vapor exchange of a temperate broadleaved forest across hourly to decadal time scales. Ecol Model 142:155–184

    Article  CAS  Google Scholar 

  • Bernacchi CJ, Singsaas EL, Pimentel C, Portis AR, Long SP (2001) Improved temperature response functions for models of Rubisco-limited photosynthesis. Plant Cell Environ 24:253–259

    Article  CAS  Google Scholar 

  • Betzelberger AM, Gillespie KM, McGrath JM, Koester RP, Nelson RL, Ainsworth EA (2010) Effects of chronic elevated ozone concentration on antioxidant capacity, photosynthesis and seed yield of 10 soybean cultivars. Plant Cell Environ 33:1569–1581

    PubMed  Google Scholar 

  • Betzelberger AM, Yendrek CR, Sun J, Leisner CP, Nelson RL, Ort DR, Ainsworth EA (2012) Ozone exposure response for U.S. soybean cultivars: linear reductions in photosynthetic potential, biomass, and yield. Plant Physiol 160:1827–1839

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Biswas DK, Xu H, Li YG, Liu MZ, Chen YH, Sun JZ, Jiang GM (2008) Assessing the genetic relatedness of higher ozone sensitivity of modern wheat to its wild and cultivated progenitors/relatives. J Exp Bot 59:951–963

    Article  CAS  PubMed  Google Scholar 

  • Booker F, Muntifering R, McGrath M, Burkey K, Decoteau D, Fiscus E, Manning W, Krupa S, Chappelka A, Grantz D (2009) The ozone component of global change: potential effects on agricultural and horticultural plant yield, product quality and interactions with invasive species. J Integr Plant Biol 51:337–351

    Article  CAS  PubMed  Google Scholar 

  • Burkey KO, Carter TE (2009) Foliar resistance to ozone injury in the genetic base of U.S. and Canadian soybean and prediction of resistance in descendent cultivars using coefficient of parentage. Field Crops Res 111:207–217

    Article  Google Scholar 

  • Campbell PKE, Middleton EM, McMurtrey JE, Corp LA, Chappelle EW (2007) Assessment of vegetation stress using reflectance or fluorescence measurements. J Environ Qual 36:832–845

    Article  CAS  PubMed  Google Scholar 

  • Carrasco-Rodriguez JL, del Valle-Tascon S (2001) Impact of elevated ozone on chlorophyll a fluorescence in field-grown oat (Avena sativa). Environ Exp Bot 45:133–142

    Article  CAS  PubMed  Google Scholar 

  • Castagna A, Nali C, Ciompi S, Lorenzini G, Soldani GF, Ranieri A (2001) Ozone exposure affects photosynthesis of pumpkin (Cucurbita pepo) plants. New Phytol 152:223–229

    Article  CAS  Google Scholar 

  • Chen JM, Liu J, Cihlar J, Goulden ML (1999) Daily canopy photosynthesis model through temporal and spatial scaling for remote sensing applications. Ecol Model 124:99–119

    Article  CAS  Google Scholar 

  • Chen S, Hong X, Harris CJ, Sharkey PM (2004) Spare modeling using orthogonal forest regression with PRESS statistic and regularization. IEEE T Syst Man Cyb 34:898–911

    Article  Google Scholar 

  • Coops NC, Hilker T, Hall FG, Nichol CJ, Drolet GG (2010) Estimation of light-use efficiency of terrestrial ecosystem from space: a status report. Bioscience 60:788–797

    Article  Google Scholar 

  • Curran PJ (1989) Remote-sensing of foliar chemistry. Remote Sens Environ 30:271–278

    Article  Google Scholar 

  • Dillaway DN, Kruger EL (2010) Thermal acclimation of photosynthesis: a comparison of boreal and temperate tree species along a latitudinal transect. Plant Cell Environ 33:888–899

    Article  CAS  PubMed  Google Scholar 

  • Dillen SY, de Beeck MO, Hufkens K, Buonanduci M, Phillips NG (2012) Seasonal patterns of foliar reflectance in relation to photosynthetic capacity and color index in two co-occurring tree species, Quercus rubra and Betula papyrifera. Agric For Meteorol 160:60–68

    Article  Google Scholar 

  • Doughty C, Asner G, Martin R (2011) Predicting tropical plant physiology from leaf and canopy spectroscopy. Oecologia 165:289–299

    Article  PubMed  Google Scholar 

  • Elvidge CD (1990) Visible and near-infrared reflectance characteristics of dry plant materials. Int J Remote Sens 11:1775–1795

    Article  Google Scholar 

  • Farage PK, Long SP (1999) The effects of O3 fumigation during leaf development on photosynthesis of wheat and pea: an in vivo analysis. Photosyn Res 59:1–7

    Article  CAS  Google Scholar 

  • Farage PK, Long SP, Lechner EG, Baker NR (1991) The sequence of change within the photosynthetic apparatus of wheat following short-term exposure to ozone. Plant Physiol 95:529–535

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Farquhar GD, von Caemmerer S (1982) Modeling photosynthetic response to environmental conditions. In: Lange OL, Nobel PS, Osmond CB, Ziegler H (eds) Encyclopedia of plant physiology, vol 12B. Springer-Verlag, Berlin, pp 549–587

    Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Feng ZZ, Pang J, Kobayashi K, Zhu JG, Ort DR (2011) Differential responses in two varieties of winter wheat to elevated ozone concentration under fully open-air field conditions. Global Change Biol 17:580–591

    Article  Google Scholar 

  • Fiscus EL, Booker FL, Burkey KO (2005) Crop responses to ozone: uptake, modes of action, carbon assimilation and partitioning. Plant, Cell Environ 28:997–1011

    Article  CAS  Google Scholar 

  • Flowers MD, Fiscus EL, Burkey KO, Booker FL, Dubois JJB (2007) Photosynthesis, chlorophyll fluorescence, and yield of snap bean (Phaseolus vulgaris L.) genotypes differing in sensitivity to ozone. Environ Exp Bot 61: 190–198

    Google Scholar 

  • Frei M, Tanaka JP, Wissuwa M (2008) Genotypic variation in tolerance to elevated ozone in rice: Dissection of distinct genetic factors linked to tolerance mechanisms. J Exp Bot 59: 3741–3752

    Google Scholar 

  • Frei M, Tanaka JP, Chen CP, Wissuwa M (2010) Mechanisms of ozone tolerance in rice: characterization of two QTLs affecting leaf bronzing by gene expression profiling and biochemical analyses. J Exp Bot 61:1405–1417

    Article  CAS  PubMed  Google Scholar 

  • Fuhrer J, Skärby L, Ashmore MR (1997) Critical levels for ozone effects on vegetation in Europe. Environ Pollut 1–2:91–106

    Article  Google Scholar 

  • Fumigalli I, Gimeno BS, Velissariou D, De Temmerman L, Mills G (2001) Evidence of ozone-induced adverse effects on crops in the Mediterranean region. Atmos Environ 35:2583–2587

    Article  Google Scholar 

  • Furbank RT, Tester M (2011) Phenomics – technologies to relieve the phenotyping bottleneck. Trends Plant Sci 16:635–644

    Article  CAS  PubMed  Google Scholar 

  • Gamon JA, Peñuelas J, Field CB (1992) A narrow-waveband spectral index that tracks diurnal changes in photosynthetic efficiency. Remote Sens Environ 41:35–44

    Article  Google Scholar 

  • Gamon JA, Field CB, Goulden ML, Griffin KL, Hartley AE, Joel G, Peñuelas J, Valentini R (1995) Relationships between NDVI, canopy structure, and photosynthesis in 3 Californian vegetation types. Ecol Appl 5:28–41

    Article  Google Scholar 

  • Gamon JA, Serrano L, Surfus JS (1997) The photochemical reflectance index: an optical indicator of photosynthetic radiation use efficiency across species, functional types, and nutrient levels. Oecologia 112:492–501

    Article  Google Scholar 

  • Geladi P, Kowalski BR (1986) Partial least-squares regression—a tutorial. Anal Chim Acta 185:1–17

    Article  CAS  Google Scholar 

  • Gillepsie KM, Xu FX, Richter KT, McGrath JM, Markelz RJC, Ort DR, Leakey ADB, Ainsworth EA (2012) Greater antioxidant and respiratory metabolism in field-grown soybean exposed to elevated O3 under both ambient and elevated CO2. Plant, Cell Environ 35:169–184

    Article  Google Scholar 

  • Gitelson A, Merzlyak MN (1994) Quantitative estimation of chlorophyll a using reflectance spectra—experiments with autumn chestnut and maple leaves. J Photochem Photobiol 22:247–252

    Article  CAS  Google Scholar 

  • Gitelson AA, Vina A, Arkebauer TJ, Rundquist DC, Keydan G, Leavitt B (2003) Remote estimation of leaf area index and green leaf biomass in maize canopies. Geophys Res Lett 30:4

    Google Scholar 

  • Grace J, Nichol C, Disney M, Lewis P, Quaife T, Bowyer P (2007) Can we measure terrestrial photosynthesis from space directly, using spectral reflectance and fluorescence? Global Change Biol 13:1484–1497

    Article  Google Scholar 

  • Gray SB, Dermody O, De Lucia EH (2010) Spectral reflectance from a soybean canopy exposed to elevated CO2 and O3. J Exp Bot 61:4413–4422

    Article  CAS  PubMed  Google Scholar 

  • Guidi L, Nali C, Ciompi S, Lorenzini G, Franco G (1997) The use of chlorophyll fluorescence and leaf gas exchange as methods for studying the different responses to ozone of two bean cultivars. J Exp Bot 48:173–179

    Article  CAS  Google Scholar 

  • Heagle AS, Letchworth MB (1982) Relationships among injury, growth and yield responses of soybean cultivars exposed to ozone at different light intensities. J Environ Qual 11:690–694

    Article  CAS  Google Scholar 

  • Kattge J, Knorr W (2007) Temperature acclimation in a biochemical model of photosynthesis: a reanalysis of data from 36 species. Plant, Cell Environ 30:1176–1190

    Article  CAS  Google Scholar 

  • Kokaly RF, Asner GP, Ollinger SV, Martin ME, Wessman CA (2009) Characterizing canopy biochemistry from imaging spectroscopy and its application to ecosystem studies. Remote Sens Environ 113:S78–S91

    Article  Google Scholar 

  • Letts MG, Phelan CA, Johnson DRE, Rood SB (2008) Seasonal photosynthetic gas exchange and leaf reflectance characteristics of male and female cottonwoods in a riparian woodland. Tree Physiol 28:1037–1048

    Article  CAS  PubMed  Google Scholar 

  • Long SP, Bernacchi CJ (2003) Gas exchange measurements, what can they tell us about the underlying limitations to photosynthesis? Procedures and sources of error. J Exp Bot 54:2393–2401

    Article  CAS  PubMed  Google Scholar 

  • Medlyn BE, Dreyer E, Ellsworth D, Forstreuter M, Harley PC, Kirschbaum MUF, Le Roux X, Montpied P, Strassemeyer J, Walcroft A et al (2002) Temperature response of parameters of a biochemically based model of photosynthesis. II. A review of experimental data. Plant, Cell Environ 25:1167–1179

    Article  CAS  Google Scholar 

  • Medvigy D, Wofsy SC, Munger JW, Hollinger DY, Moorcroft PR (2009) Mechanistic scaling of ecosystem function and dynamics in space and time: ecosystem Demography model version 2. J Geophys Res 114:G01002

    Google Scholar 

  • Meroni M, Panigada C, Rossini M, Picchi V, Cogliati S, Colombo R (2009) Using optical remote sensing techniques to track the development of ozone-induced stress. Environ Pollut 157:1413–1420

    Article  CAS  PubMed  Google Scholar 

  • Mills G, Buse A, Gimeno B, Bermejo V, Holland M, Emberson L, Pleijel H (2007) A synthesis of AOT40-based response functions and critical levels of ozone for agricultural and horticultural crops. Atmos Environ 41:2630–2643

    Article  CAS  Google Scholar 

  • Mills G, Hayes F, Simpson D, Emberson L, Norris D, Harmens H, Büker P (2011) Evidence of widespread effects of ozone on crops and (semi-) natural vegetation in Europe (1990–2006) in relation to AOT40- and flux-based risk maps. Global Change Biol 17:592–613

    Article  Google Scholar 

  • Montes JM, Melchinger AE, Reif JC (2007) Novel throughput phenotyping platforms in plant genetic studies. Trends Plant Sci 12:433–436

    Article  CAS  PubMed  Google Scholar 

  • Morgan PB, Bernacchi CJ, Ort DR, Long SP (2004) An in vivo analysis of the effect of season-long open-air elevation of ozone to anticipated 2050 levels on photosynthesis in soybean. Plant Physiol 135:2348–2357

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Myneni RB, Williams DL (1994) On the relationship between FAPAR and NDVI. Remote Sens Environ 49:200–211

    Article  Google Scholar 

  • Ollinger SV (2011) Sources of variability in canopy reflectance and the convergent properties of plants. New Phytol 189:375–394

    Article  CAS  PubMed  Google Scholar 

  • Osborne SL, Schepers JS, Francis DD, Schlemmer MR (2002) Use of spectral radiance to estimate in-season biomass and grain yield in nitrogen- and water-stressed corn. Crop Sci 42:165–171

    Article  PubMed  Google Scholar 

  • Peñuelas J, Filella I, Biel C, Serrano L, Save R (1993) The reflectance at the 950–970 nm region as an indicator of plant water status. Int J Remote Sens 14:1887–1905

    Article  Google Scholar 

  • Peñuelas J, Filella I, Gamon JA (1995) Assessment of photosynthetic radiation-use efficiency with spectral reflectance. New Phytol 131:291–296

    Article  Google Scholar 

  • Picchi V, Iriti M, Quaroni S, Saracchi M, Viola P, Faoro F (2010) Climate variations and phenological stages modulate ozone damages in field-grown wheat. A three-year study with eight modern cultivars in Po Valley (Northern Italy). Agricul Ecosys Environ 135:310–317

    Article  CAS  Google Scholar 

  • Price KV, Storn RM, Lampinen JA (2006) Differential evolution: a practical approach to global optimization. Springer, New York

    Google Scholar 

  • Ranieri A, Giuntini D, Ferraro F, Nali C, Baldan B, Lorenzini G, Soldatini GF, Soldatini F (2001) Chronic ozone fumigation induces alterations in thylakoid functionality and composition in two poplar clones. Plant Physiol Biochem 39:999–1008

    Article  CAS  Google Scholar 

  • Reid CD, Fiscus EL, Burkey KO (1998) Combined effects of chronic ozone and elevated CO2 on Rubisco activity and leaf components in soybean (Glycine max). J Exp Bot 49:1999–2011

    CAS  Google Scholar 

  • Richardson AD, Duigan SP, Berlyn GP (2002) An evaluation of noninvasive methods to estimate foliar chlorophyll content. New Phytol 153:185–194

    Article  CAS  Google Scholar 

  • Rogers A, Allen DJ, Davey PA, Morgan PB, Ainsworth EA, Bernacchi CJ, Cornic G, Dermody OC, Heaton EA, Mahoney J et al (2004) Leaf photosynthesis and carbohydrate dynamics of soybean grown throughout their life-cycle under free-air carbon dioxide enrichment. Plant Cell Environ 28:449–458

    Article  Google Scholar 

  • Rudorff BFT, Mulchi CL, Daughtry CST, Lee EB (1996) Growth and radiation use efficiency of wheat and corn grown under elevated ozone and carbon dioxide atmospheres. Remote Sens Environ 55:163–173

    Article  Google Scholar 

  • Serbin SP (2012) Spectroscopic determination of leaf nutritional, morphological, and metabolic traits. Dissertation, University of Wisconsin - Madison, Madison, Wisconsin, Ph.D

    Google Scholar 

  • Serbin SP, Dillaway DN, Kruger EL, Townsend PA (2012) Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. J Exp Bot 63:489–502

    Article  CAS  PubMed  Google Scholar 

  • Shrestha A, Grantz DA (2005) Ozone impacts on competition between tomato and yellow nutsedge: above- and below-ground effects. Crop Sci 45:1587–1595

    Article  CAS  Google Scholar 

  • Tuberosa R (2012) Phenotyping for drought tolerance of crops in the genomics era. Front Physiol 3:347. doi:10.3389/fphys.2012.00347

    PubMed Central  PubMed  Google Scholar 

  • Ustin SL, Gitelson AA, Jacquemoud S, Schaepman M, Asner GP, Gamon JA, Zarco-Tejada P (2009) Retrieval of foliar information about plant pigment systems from high resolution spectroscopy. Remote Sens Environ 113:S67–S77

    Article  Google Scholar 

  • Van Dingenen R, Dentener FJ, Raes F, Krol MC, Emberson L, Cofala J (2009) The global impact of ozone on agricultural crop yields under current and future air quality legislation. Atmos Environ 43:604–618

    Article  Google Scholar 

  • Wang Q, Iio A, Kakubari Y (2008) Broadband simple ratio closely traced seasonal trajectory of canopy photosynthetic capacity. Geophys Res Letters 35:L07401

    Google Scholar 

  • Williams JH, Ashenden TW (1992) Differences in the spectral characteristics of white clover exposed to gaseous pollutants and acid mist. New Phytol 120:69–75

    Article  CAS  Google Scholar 

  • Wold S, Ruhe A, Wold H, Dunn WJ (1984) The collinearity problem in linear-regression—the partial least-squares (PLS) regression approach to generalized inverses. Siam J Sci Stat Comp 5:735–743

    Article  Google Scholar 

  • Wold S, Sjostrom M, Eriksson L (2001) PLS-regression: a basic tool of chemometrics. Chemometr Intell Lab 58:109–130

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank Chris Montes, Kannan Puthuval, and David Drag for managing SoyFACE, and Donald Ort for facilitating research. Chris Montes, Joe Sullivan, and Amy Betzelberger assisted with measurements of leaf optical properties and gas exchange. This study was supported in part by the Agriculture and Food Research Initiative competitive grant no. 2010-65114-20355 from the USDA National Institute of Food and Agriculture to E.A.A, NASA Earth and Space Science Fellowship NNX08AV07H to S.P.S. and NASA HyspIRI Preparatory Grant NNX10AJ94G to P.A.T.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth A. Ainsworth.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ainsworth, E.A., Serbin, S.P., Skoneczka, J.A. et al. Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynth Res 119, 65–76 (2014). https://doi.org/10.1007/s11120-013-9837-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-013-9837-y

Keywords

Navigation