Skip to main content
Log in

Cytochrome c 6-like protein as a putative donor of electrons to photosystem I in the cyanobacterium Nostoc sp. PCC 7119

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Most organisms performing oxygenic photosynthesis contain either cytochrome c 6 or plastocyanin, or both, to transfer electrons from cytochrome b 6-f to photosystem I. Even though plastocyanin has superseded cytochrome c 6 along evolution, plants contain a modified cytochrome c 6, the so called cytochrome c 6A, whose function still remains unknown. In this article, we describe a second cytochrome c 6 (the so called cytochrome c 6-like protein), which is found in some cyanobacteria but is phylogenetically more related to plant cytochrome c 6A than to cyanobacterial cytochrome c 6. In this article, we conclude that the cytochrome c 6-like protein is a putative electron donor to photosystem I, but does play a role different to that of cytochrome c 6 and plastocyanin as it cannot accept electrons from cytochrome f. The existence of this third electron donor to PSI could explain why some cyanobacteria are able to grow photoautotrophically in the absence of both cytochrome c 6 and plastocyanin. In any way, the Cyt c 6-like protein from Nostoc sp. PCC 7119 would be potentially utilized for the biohydrogen production, using cell-free photosystem I catalytic nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

Cyt:

Cytochrome

E m :

Midpoint redox potential

k bim :

Second-order rate constant

k et :

First-order electron transfer rate constant

k inf :

Bimolecular rate constant extrapolated to infinite ionic strength

k obs :

Observed pseudo-first-order rate constant

Pc:

Plastocyanin

pI:

Isoelectric point

PSI:

Photosystem I

References

  • Adachi J, Hasegawa M (1992) MOLPHY version 2.3: Programs for Molecular Phylogenetics Based on Maximum Likelihood. In: Computer Science Monographs 28. Institute of Statistical Mathematics, Tokyo

  • Adolph KW, Haerlkorn R (1971) Isolation and characterization of a virus infecting the blue-green alga Nostoc muscorum. Virology 46:200–208. doi:10.1016/0042-6822(71)90023-7

    Article  PubMed  CAS  Google Scholar 

  • Albarrán C, Navarro JA, Molina-Heredia FP, PdelS Murdoch, De la Rosa MA, Hervás M (2005) Laser flash-induced kinetic analysis of cytochrome f oxidation by wild-type and mutant plastocyanin from the cyanobacterium Nostoc sp. PCC 7119. Biochemistry 44:11601–11607. doi:10.1021/bi050917g

    Article  PubMed  Google Scholar 

  • Appleby CA (1969) Electron transport systems of Rhizobium japonicum. II. Rhizobium haemoglobin, cytochromes and oxidases in free-living (cultured) cells. Biochim Biophys Acta 172:88–105. doi:10.1016/0005-2728(69)90094-2

    Article  PubMed  CAS  Google Scholar 

  • Ardelean I, Matthijs HC, Havaux M, Joset F, Jeanjean R (2002) Unexpected changes in photosystem I function in a cytochrome c 6-deficient mutant of the cyanobacterium Synechocystis PCC 6803. FEMS Microbiol Lett 213:113–119. doi:10.1111/j.1574-6968.2002.tb11294.x

    Article  PubMed  CAS  Google Scholar 

  • Arslan E, Schulz H, Zufferey R, Künzler P, Thöny-Meyer L (1998) Overproduction of the Bradyrhizobium japonicum c-type cytochrome subunits of the cbb 3 oxidase in Escherichia coli. Biochem Biophys Res Commun 251:744–747. doi:10.1006/bbrc.1998.9549

    Article  PubMed  CAS  Google Scholar 

  • Badsberg U, Jorgensen AMM, Gesmar H, Led JJ, Hammerstad JM, Jespersen LL, Ulstrup J (1996) Solution structure of reduced plastocyanin from the blue-green alga Anabaena variabilis. Biochemistry 35:7021–7031. doi:10.1021/bi960621y

    Article  PubMed  CAS  Google Scholar 

  • Beissinger M, Sticht H, Sutter M, Ejchart A, Haehnel W, Rosch P (1998) Solution structure of cytochrome c 6 from the thermophilic cyanobacterium Synechococcus elongates. EMBO J 17:27–36. doi:10.1093/emboj/17.1.27

    Article  PubMed  CAS  Google Scholar 

  • Berry S, Schneider D, Vermaas WFJ, Rogner M (2002) Electron transport routes in whole cells of Synechocystis sp. PCC 6803: the role of the cytochrome bd-type oxidase. Biochemistry 4:3422–3429. doi:10.1007/s11120-008-9398-7

    Article  Google Scholar 

  • Bialek W, Nelson M, Tamiola K, Kallas T, Szczepaniak A (2008) Deeply branching c 6-like cytochromes of cyanobacteria. Biochemistry 47:5515–5522. doi:10.1021/bi701973g

    Article  PubMed  CAS  Google Scholar 

  • Bovy A, de Vrieze G, Borrias M, Weisbeek P (1992) Transcriptional regulation of the plastocyanin and cytochrome c553 genes from the cyanobacterium Anabaena species PCC 7937. Mol Microbiol 6:1507–1513. doi:10.1111/j.1365-2958.1992.tb00871.x

    Article  PubMed  CAS  Google Scholar 

  • Brettell K (1997) Electron transfer and arrangement of the redox cofactors in photosystem I. Biochim Biophys Acta 1318:322–373. doi:10.1016/S0005-2728(96)00112-0

    Article  Google Scholar 

  • Casadaban MJ, Cohen SN (1980) Analysis of gene control signals by DNA fusion and cloning in Escherichia coli. J Mol Biol 138:179–207. doi:10.1016/0022-2836(80)90283-1

    Article  PubMed  CAS  Google Scholar 

  • Cserzo M, Wallin E, Simon I, von Heijne G, Elofsson A (1997) Prediction of transmembrane alpha-helices in prokaryotic membrane proteins: the Dense Alignment Surface method. Protein Eng 10:673–676. doi:10.1093/protein/10.6.673

    Article  PubMed  CAS  Google Scholar 

  • De la Cerda B, Castielli O, Durán RV, Navarro JA, Hervás M, De la Rosa MA (2007) A proteomic approach to iron and copper homeostasis in cyanobacteria. Brief Funct Genomic Proteomic 6:322–329. doi:10.1093/bfgp/elm030

    Article  PubMed  Google Scholar 

  • De la Rosa MA, Navarro JA, Díaz-Quintana A, De la Cerda B, Molina-Heredia FP, Balme A, Murdoch PS, Díaz-Moreno I, Durán RV, Hervás M (2002) An evolutionary analysis of the electrostatic interactions of photosystem I with cytochrome c 6 and plastocyanin. Bioelectrochemistry 55:41–45. doi:10.1016/S1567-5394(01)00136-0

    Article  Google Scholar 

  • Díaz-Moreno I, Díaz-Quintana A, Molina-Heredia FP, Nieto PM, Hansson O, De la Rosa MA, Karlsson BG (2005) NMR analysis of the transient complex between membrane photosystem I and soluble cytochrome c 6. J Biol Chem 280:7925–7931. doi:10.1074/jbc.M412422200

    Article  PubMed  Google Scholar 

  • Díaz-Quintana A, Navarro JA, Hervás M, Molina-Heredia FP, De la Cerda B, De la Rosa MA (2003) A comparative structural and functional analysis of cyanobacterial plastocyanin and cytochrome c 6 as alternative electron donors to photosystem I. Photosynth Res 75:97–110. doi:10.1023/A:1022841513592

    Article  PubMed  Google Scholar 

  • Durán RV, Hervás M, De La Rosa MA, Navarro JA (2004) The efficient functioning of photosynthesis and respiration in Synechocystis sp. PCC 6803 strictly requires the presence of either cytochrome c 6 or plastocyanin. J Biol Chem 279:7229–7233. doi:10.1074/jbc.M311565200

    Article  PubMed  Google Scholar 

  • Durán RV, Hervás M, De la Cerda B, De la Rosa MA, Navarro JA (2006) A laser flash-induced kinetic analysis of in vivo photosystem I reduction by site-directed mutants of plastocyanin and cytochrome c 6 in Synechocystis sp. PCC 6803. Biochemistry 45:1054–1060. doi:10.1021/bi052090w

    Article  PubMed  Google Scholar 

  • Emanuelsson O, Brunak S, von Heijne G, Nielsen H (2007) Locating proteins in the cell using TargetP, SignalP and related tools. Nat Protoc 2:953–971. doi:10.1038/nprot.2007.131

    Article  PubMed  CAS  Google Scholar 

  • Finazzi G, Sommer F, Hippler M (2005) Release of oxidized plastocyanin from photosystem I limits electron transfer between photosystem I and cytochrome b 6 f complex in vivo. Proc Natl Acad Sci USA 102:7031–7036. doi:10.1073/pnas.0406288102

    Article  PubMed  CAS  Google Scholar 

  • Frazão C, Soares CM, Carrondo MA, Pohl E, Dauter Z, Wilson KS, Hervás M, Navarro JA, De la Rosa MA, Sheldrick GM (1995) Ab initio determination of the crystal structure of cytochrome c 6 and comparison with plastocyanin. Structure 3:1159–1169. doi:10.1016/S0969-2126(01)00252-0

    Article  PubMed  Google Scholar 

  • Fromme P, Melkozernov A, Jordan P, Krauss N (2003) Structure and function of photosystem I: interaction with its soluble electron carriers and external antenna systems. FEBS Lett 555:40–44. doi:10.1016/S0014-5793(03)01124-4

    Article  PubMed  CAS  Google Scholar 

  • Gasteiger E, Hoogland C, Gattiker A, Duvaud S, Wilkins MR, Appel RD, Bairoch A (2005) Protein identification and analysis tools on the ExPASy server. In: Walker JM (ed) The proteomics protocols handbook. Humana Press Inc, Totowa, NJ, pp 571–607

    Chapter  Google Scholar 

  • Guex N, Peitsch MC (1997) SWISS-MODEL and the Swiss-PdbViewer: an environment for comparative protein modelling. Electrophoresis 18:2714–2723. doi:10.1002/elps.1150181505

    Article  PubMed  CAS  Google Scholar 

  • Hervás M, Navarro JA, Díaz A, Bottin H, De la Rosa MA (1995) Laser-flash kinetic analysis of the fast electron transfer from plastocyanin and cytochrome c 6 to photosystem I. Experimental evidences on the evolution of the reaction mechanism. Biochemistry 34:11321–11326. doi:10.1021/bi00036a004

    Article  PubMed  Google Scholar 

  • Hervás M, Myshkin E, Vintonenko N, De la Rosa MA, Bullerjahn GS, Navarro JA (2003a) Mutagenesis of Prochlorothrix plastocyanin reveals additional features in Photosystem I interaction. J Biol Chem 278:8179–8183. doi:10.1074/jbc.M211913200

    Article  PubMed  Google Scholar 

  • Hervás M, Navarro JA, De la Rosa MA (2003b) Electron transfer between membrane complexes and soluble proteins in photosynthesis. Acc Chem Res 36:798–805. doi:10.1021/ar020084b

    Article  PubMed  Google Scholar 

  • Iwuchukwu IJ, Vaughn M, Myers N, O’Neil H, Frymier P, Bruce BD (2010) Self-organized photosynthetic nanoparticle for cell-free hydrogen production. Nat Nanotechnol 5:73–79. doi:10.1038/nnano.2009.315

    Article  PubMed  CAS  Google Scholar 

  • Kaneko T, Nakamura Y, Wolk CP, Kuritz T, Sasamoto S, Watanabe A, Iriguchi M, Ishikawa A, Kawashima K, Kimura T, Kishida Y, Kohara M, Matsumoto M, Matsuno A, Muraki A, Nakazaki N, Shimpo S, Sugimoto M, Takazawa M, Yamada M, Yasuda M, Tabata S (2001) Complete genomic sequence of the filamentous nitrogen-fixing cyanobacterium Anabaena sp. strain PCC 7120. DNA Res 8:205–213. doi:10.1093/dnares/8.5.205

    Article  PubMed  CAS  Google Scholar 

  • Kelley LA, Sternberg MJE (2009) Protein structure prediction on the web: a case study using the Phyre server. Nat Protoc 4:363–371. doi:10.1038/nprot.2009.2

    Article  PubMed  CAS  Google Scholar 

  • Kerfeld CA, Krogmann DW (1998) Photosynthetic cytochromes c in cyanobacteria, algae and plants. Annu Rev Plant Physiol Plant Mol Biol 49:397–425. doi:10.1146/annurev.arplant.49.1.397

    Article  PubMed  CAS  Google Scholar 

  • Laskowski RA, McArthur MW, Moss DS, Thornton JM (1993) PROCHECK: a program to check the stereochemical quality of protein structures. J Appl Crystallogr 26:283–291. doi:10.1107/S0021889892009944

    Article  CAS  Google Scholar 

  • Marcus RA, Sutin N (1985) Electron transfers in chemistry and biology. Biochim Biophys Acta 811:265–322. doi:10.1016/0304-4173(85)90014-X

    CAS  Google Scholar 

  • Marinus MG, Morris NR (1973) Isolation of deoxyribonucleic acid methylase mutants of Escherichia coli K-12. J Bacteriol 114:1143–1150

    PubMed  CAS  Google Scholar 

  • Metzger SU, Pakrasi HB, Whitmarsh J (1995) Characterization of a double deletion mutant that lacks cytochrome c 6 and cytochrome c M in Synechocystis 6803. In: Mathis P (ed) Photosynthesis: from light to biosphere. Kluwer Academic Publishers, Dordrecht, pp 823–826

    Google Scholar 

  • Misra HS, Khairnar NP, Mahajan SK (2003) An alternate photosynthetic electron donor system for PSI supports light dependent nitrogen fixation in a non-heterocystous cyanobacterium, Plectonema boryanum. J Plant Physiol 160:33–39. doi:10.1078/0176-1617-00846

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA (1998) Cloning and correct expression in Escherichia coli of the petE and petJ genes respectively encoding plastocyanin and cytochrome c 6 from the cyanobacterium Anabaena sp. PCC 7119. Biochem Biophys Res Commun 243:302–306. doi:10.1006/bbrc.1997.7953

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Díaz-Quintana A, Hervás M, Navarro JA, De la Rosa MA (1999) Site-directed mutagenesis of cytochrome c 6 from Anabaena Species PCC 7119. J Biol Chem 274:33565–33570. doi:10.1074/jbc.274.47.33565

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Hervás M, Navarro JA, De la Rosa MA (2001) A single arginyl residue in plastocyanin and in cytochrome c 6 from the cyanobacterium Anabaena sp. PCC 7119 is required for efficient reduction of photosystem I. J Biol Chem 276:601–605. doi:10.1074/jbc.M007081200

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Balme A, Hervás M, Navarro JA, De la Rosa MA (2002) A comparative structural and functional analysis of cytochrome c M, cytochrome c 6, and plastocyanin from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett 517:50–54. doi:10.1016/S0014-5793(02)02576-0

    Article  PubMed  CAS  Google Scholar 

  • Molina-Heredia FP, Wastl J, Navarro JA, Bendall DS, Hervás M, Howe CJ, De la Rosa MA (2003) Photosynthesis: a new function for an old cytochrome? Nature 424:33–34. doi:10.1038/424033b

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor AM, Valladares A, Flores E, Herrero A (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44:1377–1385. doi:10.1046/j.1365-2958.2002.02970.x

    Article  PubMed  CAS  Google Scholar 

  • Navarro JA, Durán RV, De la Rosa MA, Hervás M (2005) Respiratory cytochrome c oxidase can be efficiently reduced by the photosynthetic redox proteins cytochrome c 6 and plastocyanin in cyanobacteria. FEBS Lett 579:3565–3568. doi:10.1016/j.febslet.2005.05.034

    Article  PubMed  CAS  Google Scholar 

  • Robertson EF, Dannelly HK, Malloy P, Reeves HC (1987) Rapid isoelectric focusing in a vertical polyacrylamide minigel system. Anal Biochem 167:290–294. doi:10.1016/0003-2697(87)90166-7

    Article  PubMed  CAS  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer Academic Publishers, Dordrecht, pp 409–435

    Google Scholar 

  • Sommer F, Drepper F, Haehnel W, Hippler M (2004) The hydrophobic recognition site formed by residues PsaA-Trp651 and PsaB-Trp627 of photosystem I in Chlamydomonas reinhardtii confers distinct selectivity for binding of plastocyanin and cytochrome c 6. J Biol Chem 279:20009–20017. doi:10.1074/jbc.M313986200

    Article  PubMed  CAS  Google Scholar 

  • Soriano GM, Ponomarev MV, Piskorowski RA, Cramer WA (1998) Identification of the basic residues of cytochrome f responsible for electrostatic docking interactions with plastocyanin in vitro: relevance to the electron-transfer reaction in vivo. Biochemistry 37:15120–15128. doi:10.1021/bi9807714

    Article  PubMed  CAS  Google Scholar 

  • Ullmann GM, Hauswald M, Jensen A, Kostic NM, Knapp E-W (1997) Comparison of the physiologically equivalent proteins cytochrome c 6 and plastocyanin on the basis of their electrostatic potentials. Tryptophan 63 in cytochrome c 6 may be isofunctional with tyrosine 83 in plastocyanin. Biochemistry 36:16187–16196. doi:10.1021/bi971241v

    Article  PubMed  CAS  Google Scholar 

  • Watkins JA, Cusanovich MA, Meyer TE, Tollin G (1994) A “parallel plate” electrostatic model for bimolecular rate constants applied to electron transfer proteins. Protein Sci 3:2104–2114. doi:10.1002/pro.5560031124

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem 278:31286–31289. doi:10.1074/jbc.M302876200

    Article  PubMed  CAS  Google Scholar 

  • Yu NY, Wagner JR, Laird MR, Melli G, Rey S, Lo R, Dao P, Sahinalp SC, Ester M, Foster LJ, Brinkman FSL (2010) PSORTb 3.0: Improved protein subcellular localization prediction with refined localization subcategories and predictive capabilities for all prokaryotes. Bioinformatics 26:1608–1615. doi:10.1093/bioinformatics/btq249

    Article  PubMed  CAS  Google Scholar 

  • Zhang L, Pakrasi HB, Whitmarsh J (1994) Photoautotrophic growth of the cyanobacterium Synechocystis sp. PCC 6803 in the absence of cytochrome c 553 and plastocyanin. J Biol Chem 269:5036–5042

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Dirección General de Investigación Científica y Técnica (DGICYT, Grant BFU2006-01361/BMC) and Junta de Andalucía (PAI, BIO022 and BIO198). We are very grateful to Prof. M. Hervás and Dr. J.A. Navarro for critically reading the manuscript. We also are grateful to Pilar Alcántara for its technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando P. Molina-Heredia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reyes-Sosa, F.M., Gil-Martínez, J. & Molina-Heredia, F.P. Cytochrome c 6-like protein as a putative donor of electrons to photosystem I in the cyanobacterium Nostoc sp. PCC 7119. Photosynth Res 110, 61–72 (2011). https://doi.org/10.1007/s11120-011-9694-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-011-9694-5

Keywords

Navigation