Skip to main content
Log in

Evolution of enzymes involved in the photorespiratory 2-phosphoglycolate cycle from cyanobacteria via algae toward plants

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

The photorespiratory pathway was shown to be essential for organisms performing oxygenic photosynthesis, cyanobacteria, algae, and plants, in the present day O2-containing atmosphere. The identification of a plant-like 2-phosphoglycolate cycle in cyanobacteria indicated that not only genes of oxygenic photosynthesis but also genes encoding photorespiratory enzymes were endosymbiotically conveyed from ancient cyanobacteria to eukaryotic oxygenic phototrophs. Here, we investigated the origin of the photorespiratory pathway in photosynthetic eukaryotes by phylogenetic analysis. We found that a mixture of photorespiratory enzymes of either cyanobacterial or α-proteobacterial origin is present in algae and higher plants. Three enzymes in eukaryotic phototrophs clustered closely with cyanobacterial homologs: glycolate oxidase, glycerate kinase, and hydroxypyruvate reductase. On the other hand, the mitochondrial enzymes of the photorespiratory cycle in algae and plants, glycine decarboxylase subunits and serine hydroxymethyltransferase, evolved from proteobacteria. Other than most genes for proteins of the photosynthetic machinery, nearly all enzymes involved in the 2-phosphogylcolate metabolism coexist in the genomes of cyanobacteria and heterotrophic bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

2PG:

2-Phosphoglycolate

3PGA:

3-Phosphoglycerate

BS:

Bootstrap value

CCM:

Inorganic carbon concentrating mechanism

GDC:

Glycine decarboxylase

GGT:

Glutamate:glyoxylate aminotransferase

GK:

Bacterial-type glycerate kinase

GLYK:

Plant-type glycerate kinase

GOX:

Glycolate oxidase

HPR:

Hydroxypyruvate reductase

PDC:

Pyruvate dehydrogenase

PGP:

2-Phosphoglycolate phosphatase

Rubisco:

Ribulose 1,5-bisphosphate carboxylase/oxygenase

SGT:

Serine:glyoxylate aminotransferase

SHMT:

Serine hydroxymethyltransferase

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Ashida H, Saito Y, Kojima C, Kobayashi K, Ogasawara N, Yokota A (2003) A functional link between RuBisCO-like protein of Bacillus and photosynthetic RuBisCO. Science 302:286–290

    Article  PubMed  CAS  Google Scholar 

  • Atteia A, Adrait A, Brugiere S, Tardif M, van Lis R, Deusch O, Dagan T, Kuhn L, Gontero B, Martin W, Garin J, Joyard J, Rolland N (2009) A proteomic survey of Chlamydomonas reinhardtii mitochondria sheds new light on the metabolic plasticity of the organelle and on the nature of the α-proteobacterial mitochondrial ancestor. Mol Biol Evol 26:1533–1548

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Hanson D, Price GD (2002) Evolution and diversity of CO2 concentrating mechanisms in cyanobacteria. Funct Plant Biol 29:161–173

    Article  CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  PubMed  CAS  Google Scholar 

  • Bari R, Kebeish R, Kalamajka R, Rademacher T, Peterhansel C (2004) A glycolate dehydrogenase in the mitochondria of Arabidopsis thaliana. J Exp Bot 55:623–630

    Article  PubMed  CAS  Google Scholar 

  • Bartsch O, Hagemann M, Bauwe H (2008) Only plant-type (GLYK) glycerate kinases produce d-glycerate 3-phosphate. FEBS Lett 582:3025–3028

    Article  PubMed  CAS  Google Scholar 

  • Bauwe H, Hagemann M, Fernie AR (2010) Photorespiration: players, partners and origin. Trends Plant Sci 15:330–336

    Article  PubMed  CAS  Google Scholar 

  • Beezley BB, Gruber PJ, Frederick SE (1976) Cytochemical localization of glycolate dehydrogenase in mitochondria of Chlamydomonas. Plant Physiol 58:315–319

    Article  PubMed  CAS  Google Scholar 

  • Blanc G, Hokamp K, Wolfe KH (2003) A recent polyploidy superimposed on older large-scale duplications in the Arabidopsis genome. Genome Res 13:137–144

    Article  PubMed  CAS  Google Scholar 

  • Boldt R, Edner C, Kolukisaoglu U, Hagemann M, Weckwerth W, Wienkoop S, Morgenthal K, Bauwe H (2005) D-Glycerate 3-kinase, the last unknown enzyme in the photorespiratory cycle in Arabidopsis, belongs to a novel kinase family. Plant Cell 17:2413–2420

    Article  PubMed  CAS  Google Scholar 

  • Castresana J (2000) Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol Biol Evol 17:540–552

    PubMed  CAS  Google Scholar 

  • Chevenet F, Brun C, Banuls AL, Jacq B, Christen R (2006) TreeDyn: towards dynamic graphics and annotations for analyses of trees. BMC Bioinform 7:439–448

    Article  Google Scholar 

  • Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Phylogeny.fr: robust phylogenetic analysis for the non-specialist. Nucleic Acids Res 36:465–469

    Article  Google Scholar 

  • Deusch O, Landan G, Roettger M, Gruenheit N, Kowallik KV, Allen JF, Martin W, Dagan T (2008) Genes of cyanobacterial origin in plant nuclear genomes point to a heterocyst-forming plastid ancestor. Mol Biol Evol 25:748–761

    Article  PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. Proc Natl Acad Sci USA 105:17199–17204

    Article  PubMed  CAS  Google Scholar 

  • Engqvist M, Drincovich MF, Flügge U-I, Maurino VG (2009) Two d-2-hydroxy-acid dehydrogenases in Arabidopsis thaliana with catalytic capacities to participate in the last reactions of the methylglyoxal and β-oxidation pathways. J Biol Chem 284:25026–25037

    Article  PubMed  CAS  Google Scholar 

  • Esser C, Ahmadinejad N, Wiegand C, Rotte C, Sebastiani F, Gelius-Dietrich G, Henze K, Kretschmann E, Richly E, Leister D, Bryant D, Steel MA, Lockhart PJ, Penny D, Martin W (2004) A genome phylogeny for mitochondria among α-proteobacteria and a predominantly eubacterial ancestry of yeast nuclear genes. Mol Biol Evol 21:1643–1660

    Article  PubMed  CAS  Google Scholar 

  • Foyer CH, Bloom AJ, Queval G, Noctor G (2009) Photorespiratory metabolism: Genes, mutants, energetics, and redox signaling. Annu Rev Plant Biol 60:455–484

    Article  PubMed  CAS  Google Scholar 

  • Frommolt R, Werner S, Paulsen H, Goss R, Wilhelm C, Zauner S, Maier UG, Grossman AR, Bhattacharya D, Lohr M (2008) Ancient recruitment by chromists of green algal genes encoding enzymes for carotenoid biosynthesis. Mol Biol Evol 25:2653–2667

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Annu Rev Plant Biol 56:99–131

    Article  PubMed  CAS  Google Scholar 

  • Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704

    Article  PubMed  Google Scholar 

  • Gupta RS, Mathews DW (2010) Signature proteins for the major clades of cyanobacteria. BMC Evol Biol 10:24–44

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Igarashi D, Miwa T, Seki M, Kobayashi M, Kato T, Tabata S, Shinozaki K, Ohsumi C (2003) Identification of photorespiratory glutamate:glyoxylate aminotransferase (GGAT) gene in Arabidopsis. Plant J 33:975–987

    Article  PubMed  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganism. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  • Keeling PJ (2010) The endosymbiotic origin, diversification and fate of plastids. Philos Trans R Soc Lond [Biol] 365:729–748

    Article  CAS  Google Scholar 

  • Kroth PG, Chiovitti A, Gruber A, Martin-Jezequel V, Mock T, Parker MS, Stanley MS, Kaplan A, Caron L, Weber T, Maheswari U, Armbrust EV, Bowler C (2008) A model for carbohydrate metabolism in the diatom Phaeodactylum tricornutum deduced from comparative whole genome analysis. PLos One 3:e1426

    Article  PubMed  Google Scholar 

  • Le Corguille G, Pearson G, Valente M, Viegas C, Gschloessl B, Corre E, Bailly X, Peters AF, Jubin C, Vacherie B, Cock JM, Leblanc C (2009) Plastid genomes of two brown algae, Ectocarpus siliculosus and Fucus vesiculosus: further insights on the evolution of red-algal derived plastids. BMC Evol Biol 9:253

    Article  PubMed  Google Scholar 

  • Le SQ, Gascuel O (2008) An improved general amino acid replacement matrix. Mol Biol Evol 25:1307–1320

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (AGT1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Olsen LI (2004) Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci 23:73–89

    Article  CAS  Google Scholar 

  • Lutziger I, Oliver DJ (2000) Molecular evidence of a unique lipoamide dehydrogenase in plastids: analysis of plastidic lipoamide dehydrogenase from Arabidopsis thaliana. FEBS Lett 484:12–16

    Article  PubMed  CAS  Google Scholar 

  • Macheroux P, Mulrooney SB, Williams CH, Massey V (1992) Direct expression of active spinach glycolate oxidase in Escherichia coli. Biochim Biophys Acta 1132:11–16

    PubMed  CAS  Google Scholar 

  • Maruyama S, Matsuzaki M, Misawa K, Nozaki H (2009) Cyanobacterial contribution to the genomes of the plastid-lacking protists. BMC Evol Biol 9:197

    Article  PubMed  Google Scholar 

  • Matsuzaki M, Misumi O, Shin I, Maruyama S, Takahara M, Miyagishima SY, Mori T, Nishida K, Yagisawa F, Nishida K, Yoshida Y, Nishimura Y, Nakao S, Kobayashi T, Momoyama Y, Higashiyama T, Minoda A, Sano M, Nomoto H, Oishi K, Hayashi H, Ohta F, Nishizaka S, Haga S, Miura S, Morishita T, Kabeya Y, Terasawa K, Suzuki Y, Ishii Y, Asakawa S, Takano H, Ohta N, Kuroiwa H, Tanaka K, Shimizu N, Sugano S, Sato N, Nozaki H, Ogasawara N, Kohara Y, Kuroiwa T (2004) Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653–657

    Article  PubMed  CAS  Google Scholar 

  • McClung CR, Hsu M, Painter JE, Gagne JM, Karlsberg SD, Salome PA (2000) Integrated temporal regulation of the photorespiratory pathway. Circadian regulation of two Arabidopsis genes encoding serine hydroxymethyltransferase. Plant Physiol 123:381–392

    Article  PubMed  CAS  Google Scholar 

  • Mereschkowsky C (1905) Über Natur und Ursprung der Chromatophoren im Pflanzenreiche. Biol Centralbl 25:593–604

    Google Scholar 

  • Moustafa A, Beszteri B, Maier UG, Bowler C, Valentin K, Bhattacharya D (2009) Genomic footprints of a cryptic plastid endosymbiosis in diatoms. Science 324:1724–1726

    Article  PubMed  CAS  Google Scholar 

  • Mulkidjanian AY, Koonin EV, Makarova KS, Mekhedov SL, Sorokin A, Wolf YI, Dufresne A, Partensky F, Burd H, Kaznadzey D, Haselkorn R, Galperin MY (2006) The cyanobacterial genome core and the origin of photosynthesis. Proc Natl Acad Sci USA 103:13126–13131

    Article  PubMed  CAS  Google Scholar 

  • Nelissen B, Vandepeer Y, Wilmotte A, Dewachter R (1995) An early origin of plastids within the cyanobacterial divergence is suggested by evolutionary trees based on complete 16S ribosomal-RNA sequences. Mol Biol Evol 12:1166–1173

    PubMed  CAS  Google Scholar 

  • Nelson EB, Tolbert NE (1970) Glycolate dehydrogenase in green algae. Arch Biochem Biophys 141:102–110

    Article  PubMed  CAS  Google Scholar 

  • Parker MS, Mock T, Armbrust EV (2008) Genomic insights into marine microalgae. Annu Rev Genet 42:619–645

    Article  PubMed  CAS  Google Scholar 

  • Raven JA, Cockell CS, La Rocha CL (2008) The evolution of inorganic carbon concentrating mechanisms in photosynthesis. Philos Trans R Soc Lond [Biol] 363:2641–2650

    Article  CAS  Google Scholar 

  • Schnarrenberger C, Martin W (2002) Evolution of the enzymes of the citric acid cycle and the glyoxylate cycle of higher plants. A case study of endosymbiotic gene transfer. Eur J Biochem 269:868–883

    Article  PubMed  CAS  Google Scholar 

  • Schwarte S, Bauwe H (2007) Identification of the photorespiratory 2-phosphoglycolate phosphatase, PGLP1, in Arabidopsis. Plant Physiol 144:1580–1586

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR (2001) An early Arabidopsis demonstration. Resolving a few issues concerning photorespiration. Plant Physiol 125:20–24

    Article  PubMed  CAS  Google Scholar 

  • Somerville CR, Ogren WL (1980) Photorespiration mutants of Arabidopsis thaliana deficient in serine-glyoxylate aminotransferase activity. Proc Natl Acad Sci USA 77:2684–2687

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W—improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Timm S, Nunes-Nesi A, Pamik T, Morgenthal K, Wienkoop S, Keerberg O, Weckwerth W, Kleczkowski LA, Fernie AR, Bauwe H (2008) A cytosolic pathway for the conversion of hydroxypyruvate to glycerate during photorespiration in Arabidopsis. Plant Cell 20:2848–2859

    Article  PubMed  CAS  Google Scholar 

  • Tolbert NE (1997) The C-2 oxidative photosynthetic carbon cycle. Annu Rev Plant Physiol Plant Mol Biol 48:1–23

    Article  PubMed  CAS  Google Scholar 

  • Voll LM, Jamai A, Renne P, Voll H, McClung CR, Weber APM (2006) The photorespiratory Arabidopsis shm1 mutant is deficient in SHM1. Plant Physiol 140:59–66

    Article  PubMed  CAS  Google Scholar 

  • Winkler U, Stabenau H (1995) Isolation and characterization of peroxisomes from diatoms. Planta 195:403–407

    Article  CAS  Google Scholar 

  • Worden AZ, Lee JH, Mock T, Rouze P, Simmons MP, Aerts AL, Allen AE, Cuvelier ML, Derelle E, Everett MV, Foulon E, Grimwood J, Gundlach H, Henrissat B, Napoli C, McDonald SM, Parker MS, Rombauts S, Salamov A, Von Dassow P, Badger JH, Coutinho PM, Demir E, Dubchak I, Gentemann C, Eikrem W, Gready JE, John U, Lanier W, Lindquist EA, Lucas S, Mayer KFX, Moreau H, Not F, Otillar R, Panaud O, Pangilinan J, Paulsen I, Piegu B, Poliakov A, Robbens S, Schmutz J, Toulza E, Wyss T, Zelensky A, Zhou K, Armbrust EV, Bhattacharya D, Goodenough UW, Van de Peer Y, Grigoriev IV (2009) Green evolution and dynamic adaptations revealed by genomes of the marine picoeukaryotes Micromonas. Science 324:268–272

    Article  PubMed  CAS  Google Scholar 

  • Yoon HS, Hackett JD, Ciniglia C, Pinto G, Bhattacharya D (2004) A molecular timeline for the origin of photosynthetic eukaryotes. Mol Biol Evol 21:809–818

    Article  PubMed  CAS  Google Scholar 

  • Zelitch I, Schultes NP, Peterson RB, Brown P, Brutnell TP (2009) High glycolate oxidase activity is required for survival of maize in normal air. Plant Physiol 149:195–204

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The work was supported by grants of the DFG (Deutsche Forschungsgemeinschaft) in the frame of Forschergruppe FOR 1186-Promics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Hagemann.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Tables

(DOC 127 kb)

Supplementary Figure S1

Maximum likelihood tree of T-proteins of glycine decarboxylase (GDC). Numbers at the node indicated bootstrap values (%) for 400 replicates. The distance scale (substitutions per site) is shown in the bottom left-hand corner. Further information (protein accession numbers and sequence similarities) is given in Supplemental Tables S1 and S2. (TIFF 4607 kb)

Supplementary Figure S2

Maximum likelihood tree of L-proteins of glycine decarboxylase (GDC) based on 30 sequences. Numbers at the node indicated bootstrap values (%) for 400 replicates. The distance scale (substitutions per site) is shown in the bottom left-hand corner. Further information (protein accession numbers and sequence similarities) is given in Supplemental Tables S1 and S2. (TIFF 4795 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kern, R., Bauwe, H. & Hagemann, M. Evolution of enzymes involved in the photorespiratory 2-phosphoglycolate cycle from cyanobacteria via algae toward plants. Photosynth Res 109, 103–114 (2011). https://doi.org/10.1007/s11120-010-9615-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9615-z

Keywords

Navigation