Skip to main content

Advertisement

Log in

Interactions between CCM and N2 fixation in Trichodesmium

  • Review
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In view of the current increase in atmospheric pCO2 and concomitant changes in the marine environment, it is crucial to assess, understand, and predict future responses of ecologically relevant phytoplankton species. The diazotrophic cyanobacterium Trichodesmium erythraeum was found to respond strongly to elevated pCO2 by increasing growth, production rates, and N2 fixation. The magnitude of these CO2 effects exceeds those previously seen in other phytoplankton, raising the question about the underlying mechanisms. Here, we review recent publications on metabolic pathways of Trichodesmium from a gene transcription level to the protein activities and energy fluxes. Diurnal patterns of nitrogenase activity change markedly with CO2 availability, causing higher diel N2 fixation rates under elevated pCO2. The observed responses to elevated pCO2 could not be attributed to enhanced energy generation via gross photosynthesis, although there are indications for CO2-dependent changes in ATP/NADPH + H+ production. The CO2 concentrating mechanism (CCM) in Trichodesmium is primarily based on HCO3 uptake. Although only little CO2 uptake was detected, the NDH complex seems to play a crucial role in internal cycling of inorganic carbon, especially under elevated pCO2. Affinities for inorganic carbon change over the day, closely following the pattern in N2 fixation, and generally decrease with increasing pCO2. This down-regulation of CCM activity and the simultaneously enhanced N2 fixation point to a shift in energy allocation from carbon acquisition to N2 fixation under elevated pCO2 levels. A strong light modulation of CO2 effects further corroborates the role of energy fluxes as a key to understand the responses of Trichodesmium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Allen JF (2002) Photosynthesis of ATP—electrons, proton pumps, rotors, and pois. Cell 110:273–276

    Article  PubMed  CAS  Google Scholar 

  • Andresen E, Lohscheider J, Setlikova E, Adamska I, Simek M, Küpper H (2010) Acclimation of Trichodesmium erythraeum ISM101 to high and low irradiance analysed on the physiological, biophysical and biochemical level. New Phytol 185:173–188

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Andrews TJ (1987) Co-evolution of Rubisco and CO2 concentrating mechanisms. In: Biggins J (ed) Progress in photosynthesis research. Proceedings of the VIIth international congress on photosynthesis, Providence, Rhode Island, USA. Martinus Nijhoff Publishers, Dordrecht, pp 601–609

  • Badger MR, Price GD (2003) CO2 concentrating mechanisms in cyanobacteria: molecular components, their diversity and evolution. J Exp Bot 54:609–622

    Article  PubMed  CAS  Google Scholar 

  • Badger MR, Andrews TJ, Whitney SM, Ludwig M, Yellowlees DC (1998) The diversity and co-evolution of Rubisco, plastids, pyrenoids and chloroplast-based CO2-concentrating mechanisms in the algae. Can J Bot 76:1052–1071

    CAS  Google Scholar 

  • Badger MR, Price GD, Long BM, Woodger FJ (2006) The environmental plasticity and ecological genomics of the cyanobacterial CO2 concentrating mechanism. J Exp Bot 57:249–265

    Article  PubMed  CAS  Google Scholar 

  • Barcelos é Ramos J, Biswas H, Schulz KG, LaRoche J, Riebesell U (2007) Effect of rising atmospheric carbon dioxide on the marine nitrogen fixer Trichodesmium. Global Biogeochem Cycles 21. doi:10.1029/2006GB002898

  • Beardall J, Giordano M (2002) Ecological implications of microalgal and cyanobacterial CCMs and their regulation. Funct Plant Biol 29:335–347

    Article  CAS  Google Scholar 

  • Beardall J, Roberts S, Millhouse J (1991) Effects of nitrogen limitation on inorganic carbon uptake and specific activity of ribulose-1, 5-P2 carboxylase in green microalgae. Can J Bot 69:1146–1150

    Article  CAS  Google Scholar 

  • Bell PRF, Fu FX (2005) Effect of light on growth, pigmentation and N2 fixation of cultured Trichodesmium sp from the Great Barrier Reef lagoon. Hydrobiologia 543:25–35

    Article  CAS  Google Scholar 

  • Bergman B, Gallon JR, Rai AN, Stal LJ (1997) N2 fixation by non-heterocystous cyanobacteria. FEMS Microbiol Rev 19:139–185

    Article  CAS  Google Scholar 

  • Berman-Frank I, Cullen JT, Shaked Y, Sherrell RM, Falkowski PG (2001a) Iron availability, cellular iron quotas, and nitrogen fixation in Trichodesmium. Limnol Oceanogr 46:1249–1260

    Article  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Chen YB, Küpper H, Kolber Z, Bergman B, Falkowski P (2001b) Segregation of nitrogen fixation and oxygenic photosynthesis in the marine cyanobacterium Trichodesmium. Science 294:1534–1537

    Article  PubMed  CAS  Google Scholar 

  • Berman-Frank I, Lundgren P, Falkowski P (2003) Nitrogen fixation and photosynthetic oxygen evolution in cyanobacteria. Res Microbiol 154:157–164

    Article  PubMed  CAS  Google Scholar 

  • Berman-Frank I, Quigg A, Finkel ZV, Irwin AJ, Haramaty L (2007) Nitrogen-fixation strategies and Fe requirements in cyanobacteria. Limnol Oceanogr 52:2260–2269

    Article  Google Scholar 

  • Breitbarth E, Wohlers J, Kläs J, LaRoche J, Peeken I (2008) Nitrogen fixation and growth rates of Trichodesmium IMS-101 as a function of light intensity. MEPS 359:25–36

    Article  CAS  Google Scholar 

  • Brown CM, MacKinnonm JD, Cockshutt AM, Villareal TA, Campbell DA (2008) Flux capacities and acclimation costs in Trichodesmium from the Gulf of Mexico. Mar Biol 154:413–422

    Article  Google Scholar 

  • Cannon GC, Bradburne CE, Aldrich HC, Baker SH, Heinhorst S, Shively JM (2001) Microcompartments in prokaryotes: carboxysomes and related polyhedra. Appl Environ Microbiol 67:5351–5361

    Article  PubMed  CAS  Google Scholar 

  • Capone DG, Oneil JM, Zehr J, Carpenter EJ (1990) Basis for diel variation in nitrogenase activity in the marineplanktonic cyanobacterium Trichodesmium thiebautii. Appl Environ Microbiol 56:3532–3536

    PubMed  CAS  Google Scholar 

  • Capone DG, Zehr JP, Paerl H, Bergman B, Carpenter EJ (1997) Trichodesmium, a globally significant marine cyanobacterium. Science 276:1221–1229

    Article  CAS  Google Scholar 

  • Capone DG, Burns JA, Montoya JP, Subramaniam A, Mahaffey C, Gunderson T, Michaels AF, Carpenter EJ (2005) Nitrogen fixation by Trichodesmium spp.: an important source of new nitrogen to the tropical and subtropical North Atlantic Ocean. Global Biogeochem Cycles 19:GB2024. doi:10.1029/2004GB002331

  • Chen YB, Dominic B, Mellon MT, Zehr JP (1998) Circadian rhythm of nitrogenase gene expression in the diazotrophic filamentous nonheterocystous cyanobacterium Trichodesmium sp strain IMS101. J Bacteriol 180:3598–3605

    PubMed  CAS  Google Scholar 

  • Colman B (1989) Photosynthetic carbon assimilation and the suppression of photorespiration in the cyanobacteria. Aquat Bot 34:211–231

    Article  CAS  Google Scholar 

  • Doney SC (2006) Oceanography—plankton in a warmer world. Nature 444:695–696

    Article  PubMed  CAS  Google Scholar 

  • Dugdale RC, Menzel DW, Ryther JH (1961) Nitrogen fixation in the Sargasso Sea. Deep-Sea Res 7:298–300

    Google Scholar 

  • Durner J, Bohm I, Knorzer OC, Boger P (1996) Proteolytic degradation of dinitrogenase reductase from Anabaena variabilis (ATCC 29413) as a consequence of ATP depletion and impact of oxygen. J Bacteriol 178:606–610

    PubMed  CAS  Google Scholar 

  • Eisenhut M, Ruth W, Haimovich M, Bauwe H, Kaplan A, Hagemann M (2008) The photorespiratory glycolate metabolism is essential for cyanobacteria and might have been conveyed endosymbiontically to plants. PNAS 105:17199–17204

    Article  PubMed  CAS  Google Scholar 

  • Espie GS, Kandasamy RA (1994) Monensin inhibition of Na+-dependent HCO3 transport distinguishes it from Na+-independent HCO3 transport and provides evidence for Na+/HCO3 symport in the cyanobacterium Synechococcus UTEX-625. Plant Physiol 104:1419–1428

    PubMed  CAS  Google Scholar 

  • Falkowski PG (1997) Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean. Nature 387:272–275

    Article  CAS  Google Scholar 

  • Falkowski PG, Raven JA (2007) Aquatic photosynthesis. Blackwell Publishers, Maiden

    Google Scholar 

  • Flores E, Herrero A (1994) Assimilatory nitrogen metabolism and its regulation. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 487–517

    Google Scholar 

  • Fredriksson C, Bergman B (1995) Nitrogenase quantity varies diurnally in a subset of cells within colonies of the nonheterocystous cyanobacteria Trichodesmium spp. Microbiology 141:2471–2478

    Article  CAS  Google Scholar 

  • Fu FX, Bell PRF (2003) Effect of salinity on growth, pigmentation, N2 fixation and alkaline phosphatase activity of cultured Trichodesmium sp. MEPS 257:69–76

    Article  CAS  Google Scholar 

  • Fujita Y, Murakami A, Aizawa K, Ohki K (1994) Short-term and long-term adaptation of the photosynthetic apparatus: homeostatic properties of thylakoids. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 677–692

    Google Scholar 

  • Giordano M (1997) Adaptation of Dunaliella salina (Volvocales, Chlorophyta) to growth on NH4 + as the sole N source. Phycologia 36:345–350

    Article  Google Scholar 

  • Giordano M, Bowes G (1997) Gas exchanges, metabolism, and morphology of Dunaliella salina in response to the CO2 concentration and nitrogen source used for growth. Plant Physiol 115:1049–1056

    PubMed  CAS  Google Scholar 

  • Giordano M, Norici A, Forssen M, Eriksson M, Raven JA (2003) An anaplerotic role for mitochondrial carbonic anhydrase in Chlamydomonas reinhardtii. Plant Physiol 132:2126–2134

    Article  PubMed  CAS  Google Scholar 

  • Giordano M, Beardall J, Raven JA (2005) CO2 concentrating mechanisms in algae: mechanisms, environmental modulation, and evolution. Ann Rev Plant Biol 56:99–131

    Article  CAS  Google Scholar 

  • Gruber N (2004) The dynamics of the marine nitrogen cycle and its influence on atmospheric CO2. In: Follows M, Oguz T (eds) The ocean carbon cycle and climate. Kluwer, Dordrecht, pp 97–148

    Google Scholar 

  • Gruber N, Sarmiento J (1997) Global patterns of marine nitrogen fixation and denitrification. Glob Biogeochem Cycles 11:235–266

    Article  CAS  Google Scholar 

  • Halbleib CM, Ludden PW (2000) Regulation of biological nitrogen fixation. J Nutr 130:1081–1084

    PubMed  CAS  Google Scholar 

  • Helman Y, Tchernov D, Reinhold L, Shibata M, Ogawa T, Schwarz R, Ohad I, Kaplan A (2003) Genes encoding A-type flavoproteins are essential for photoreduction of O2 in cyanobacteria. Curr Biol 13:230–235

    Article  PubMed  CAS  Google Scholar 

  • Hutchins DA, Fu F-X, Zhang Y, Warner ME, Feng Y, Portune K, Bernhardt PW, Mulholland MR (2007) CO2 control of Trichodesmium N2 fixation, photosynthesis, growth rates and elemental ratios: implications for past, present and future ocean biogeochemistry. Limnol Oceanogr 552:1293–1304

    Article  Google Scholar 

  • Hutchins DA, Mulholland MR, Fu F (2009) Nutrient cycles and marine microbes in a CO2-enriched ocean. Oceanography 22:128–145

    Article  Google Scholar 

  • Kana TM (1993) Rapid oxygen cycling in Trichodesmium thiebautii. Limnol Oceanogr 38:18–24

    Article  CAS  Google Scholar 

  • Kaplan A, Reinhold L (1999) CO2 concentrating mechanisms in photosynthetic microorganisms. Annu Rev Plant Physiol Plant Mol Biol 50:539–570

    Article  PubMed  CAS  Google Scholar 

  • Kranz SA, Sültemeyer D, Richter K-U, Rost B (2009) Carbon acquisition in Trichodesmium: the effect of pCO2 and diurnal changes. Limnol Oceanogr 54:548–559

    Article  CAS  Google Scholar 

  • Kranz SA, Levitan O, Richter K-U, Prasil O, Berman-Frank I, Rost B (2010a) Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: physiological responses. Plant Physiol 154:334–345

    Article  PubMed  CAS  Google Scholar 

  • Kranz SA, Wolf-Gladrow D, Nehrke G, Langer G, Rost B (2010b) Calcium carbonate precipitation induced by the growth of the marine cyanobacterium Trichodesmium. Limnol Oceanogr 55:2563–2569

    Article  CAS  Google Scholar 

  • Küpper H, Ferimazova N, Setlik I, Berman-Frank I (2004) Traffic lights in Trichodesmium. Regulation of photosynthesis for nitrogen fixation studied by chlorophyll fluorescence kinetic microscopy. Plant Physiol 135:2120–2133

    Article  PubMed  Google Scholar 

  • Levitan O, Rosenberg G, Setlik I, Setlikova E, Grigel J, Klepetar J, Prasil O, Berman-Frank I (2007) Elevated CO2 enhances nitrogen fixation and growth in the marine cyanobacterium Trichodesmium. Global Change Biol 13:531–538

    Article  Google Scholar 

  • Levitan O, Brown CM, Sudhaus S, Campbell D, LaRoche J, Berman-Frank I (2010a) Regulation of nitrogen metabolism in the marine diazotroph Trichodesmium IMS101 under varying temperatures and atmospheric CO2 concentrations. Environ Microbiol. doi:10.1111/j.1462-2920.2010.02195.x

  • Levitan O, Kranz SA, Spungin D, Prasil O, Rost B, Berman-Frank I (2010b) Combined effects of CO2 and light on the N2-fixing cyanobacterium Trichodesmium IMS101: a mechanistic view. Plant Physiol 154:346–356

    Article  PubMed  CAS  Google Scholar 

  • Levitan O, Sudhaus S, LaRoche J, Berman-Frank I (2010c) The influence of pCO2 and temperature on gene expression of carbon and nitrogen pathways in Trichodesmium IMS101. PLoS One 5. doi:10.1371/journal.pone.0015104

  • Lin S, Henze S, Lundgren P, Bergman B, Carpenter EJ (1999) Whole-cell immunolocalization of nitrogenase in marine diazotrophic cyanobacteria Trichodesmium spp. Appl Environ Microbiol 64:3052–3064

    Google Scholar 

  • Maeda S, Badger MR, Price GD (2002) Novel gene products associated with NdhD3/D4-containing NDH-1 complexes are involved in photosynthetic CO2 hydration in the cyanobacterium Synechococcus sp. PCC7942. Mol Microbiol 43:425–435

    Article  PubMed  CAS  Google Scholar 

  • Mahaffey C, Michaels AF, Capone DG (2005) The conundrum of marine N2 fixation. Am J Sci 305:546–595

    Article  CAS  Google Scholar 

  • Maier-Reimer E, Mikolajewicz U, Winguth A (1996) Future ocean uptake of CO2: interaction between ocean circulation and biology. Clim Dyn 12:711–722

    Article  Google Scholar 

  • Milligan AJ, Berman-Frank I, Gerchman Y, Dismukes GC, Falkowski PG (2007) Light-dependent oxygen consumption in nitrogen-fixing cyanobacteria plays a key role in nitrogenase protection. J Phycol 43:845–852

    Article  CAS  Google Scholar 

  • Mitchell P (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemi-osmotic type of mechanism. Nature 191:144–148

    Article  PubMed  CAS  Google Scholar 

  • Mulholland MR, Capone DG (2000) The nitrogen physiology of the marine N2-fixing cyanobacteria Trichodesmium spp. Trends Plant Sci 5:148–153

    Article  PubMed  CAS  Google Scholar 

  • Mulholland MR, Bronk DA, Capone DG (2004) Dinitrogen fixation and release of ammonium and dissolved organic nitrogen by Trichodesmium IMS101. Aquat Microb Ecol 37:85–94

    Article  Google Scholar 

  • Omata T, Price GD, Badger MR, Okamura M, Gohta S, Ogawa T (1999) Identification of an ATP-binding cassette transporter involved in bicarbonate uptake in the cyanobacterium Synechococcus sp strain PCC 7942. PNAS 96:13571–13576

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Maeda S-I, Omata T, Badger MR (2002) Modes of inorganic carbon uptake in the cyanobacterium Synechococcus sp. PCC7942. Funct Plant Biol 29:131–149

    Article  CAS  Google Scholar 

  • Price GD, Woodger FJ, Badger MR, Howitt SM, Tucker L (2004) Identification of a SulP-type bicarbonate transporter in marine cyanobacteria. PNAS 101:18228–18233

    Article  PubMed  CAS  Google Scholar 

  • Price GD, Badger MR, Woodger FJ, Long BM (2008) Advances in understanding the cyanobacterial CO2-concentrating-mechanism (CCM): functional components, Ci transporters, diversity, genetic regulation and prospects for engineering into plants. J Exp Bot 59:1441–1461

    Article  PubMed  CAS  Google Scholar 

  • Raven JA (1991) Physiology of inorganic carbon acquisition and implications for resource use efficiency by marine phytoplankton: relation to increased CO2 and temperature. Plant Cell Environ 14:779–794

    Article  CAS  Google Scholar 

  • Raven JA (2003) Carboxysomes and peptidoglycan walls of cyanelles: possible physiological functions. Eur J Phycol 38:47–53

    Article  Google Scholar 

  • Raven JA, Ball LA, Beardall J, Giordano M, Maberly SC (2005) Algae lacking carbon-concentrating mechanisms. Can J Bot 83:879–890

    Article  CAS  Google Scholar 

  • Saari LL, Pope MR, Murrell SA, Ludden PW (1986) Studies on the activating enzyme for iron protein of nitrogenase from Rhodospirillum rubrum. J Biol Chem 261:4973–4977

    PubMed  CAS  Google Scholar 

  • Sandh G, El-Shehawy R, Diez B, Bergman B (2009) Temporal separation of cell division and diazotrophy in the marine diazotrophic cyanobacterium Trichodesmium erythraeum IMS101. FEMS Microbiol Lett 295:281–288

    Article  PubMed  CAS  Google Scholar 

  • Sanudo-Wilhelmy SA, Kustka AB, Gobler CJ, Hutchins DA, Yang M, Lwiza K, Burns J, Capone DG, Raven JA, Carpenter EJ (2001) Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean. Nature 411:66–69

    Article  PubMed  CAS  Google Scholar 

  • Schmetterer G (1994) Cyanobacterial respiration. In: Bryant DA (ed) The molecular biology of cyanobacteria. Kluwer, Dordrecht, pp 409–435

    Google Scholar 

  • Shibata M, Ohkawa H, Kaneko T, Fukuzawa H, Tabata S (2001) Distinct constitutive and low-CO2-induced CO2 uptake systems in cyanobacteria: genes involved and their phylogenetic relationship with homologous genes in other organisms. PNAS 98:11789–11794

    Article  PubMed  CAS  Google Scholar 

  • Shibata M, Katoh H, Sonoda M, Ohkawa H, Shimoyama M (2002) Genes essential to sodium-dependent bicarbonate transport in cyanobacteria. Function and phylogenetic analysis. J Biol Chem 277:18658–18664

    Article  PubMed  CAS  Google Scholar 

  • Stroebel D, Choquet Y, Popot JL, Picot D (2003) An atypical haem in the cytochrome b(6)f complex. Nature 426:413–418

    Article  PubMed  CAS  Google Scholar 

  • Subramaniam A, Carpenter EJ, Karentz D, Falkowski PG (1999) Bio-optical properties of the marine diazothrophic cyanobacteria Trichodesmuim spp. I. Absorption and photosynthetic action spectra. Limnol Oceanogr 44:608–617

    Article  CAS  Google Scholar 

  • Tortell PD (2000) Evolutionary and ecological perspectives on carbon acquisition in phytoplankton. Limnol Oceanogr 45:744–750

    Article  CAS  Google Scholar 

  • Vermaas WF (2001) Photosynthesis and respiration in cyanobacteria. In: Encyclopedia of life sciences. Nature Publishing Group, London, pp 1–7

  • Villareal TA, Carpenter EJ (1990) Diel buoyancy regulation in the marine diazotrophic cyanobacterium Trichodesmium thiebautii. Limnol Oceanogr 35:1832–1837

    Article  Google Scholar 

  • Wannicke N, Koch BP, Voss M (2009) Release of fixed N2 and C as dissolved compounds by Trichodesmium erythreum and Nodularia spumigena under the influence of high light and high nutrient (P). Aquat Microb Ecol 57:175–189

    Article  Google Scholar 

  • Woodger FJ, Bryant DA, Price GD (2007) Transcriptional regulation of the CO2-concentrating mechanism in a euryhaline, coastal marine cyanobacterium, Synechococcus sp. strain PCC 7002: role of NdhR/CcmR. J Bacteriol 189:3335–3347

    Article  PubMed  CAS  Google Scholar 

  • Young EB, Beardall J (2005) Modulation of photosynthesis and inorganic carbon acquisition in a marine microalga by nitrogen, iron and light availability. Can J Bot 83:917–928

    Article  CAS  Google Scholar 

  • Zehr JP, Wyman M, Miller V, Duguay L, Capone DG (1993) Modification of the Fe protein of nitrogenase in natural-populations of Trichodesmium thiebautii. Appl Environ Microbiol 59:669–676

    PubMed  CAS  Google Scholar 

  • Zehr JP, Braun S, Chen YB, Mellon M (1996) Nitrogen fixation in the marine environment: relating genetic potential to nitrogenase activity. J Exp Mar Biol 203:61–73

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC grant agreement [205150]. This research contributes to the “European Project on Ocean Acidification” (EPOCA) under grant agreement no 211384. We thank Dean Price, Ying Ye, and the two anonymous reviewers for their constructive comments on the manuscript. We thank Klaus-Uwe Richter and Ulrike Richter for laboratory assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sven A. Kranz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kranz, S.A., Eichner, M. & Rost, B. Interactions between CCM and N2 fixation in Trichodesmium . Photosynth Res 109, 73–84 (2011). https://doi.org/10.1007/s11120-010-9611-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-010-9611-3

Keywords

Navigation