Skip to main content
Log in

Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations

  • Emerging Techniques
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Current methods for the study of pigments involve freezing in liquid nitrogen and storage at −80°C or lyophilization until HPLC analysis. These requirements greatly restrict ecophysiological research in remote areas where such resources are hardly available. We aimed to overcome such limitations by developing several techniques not requiring freezing or lyophilization. Two species with contrasting foliar characteristics (Olea europaea and Taraxacum officinale) were chosen. Seven preservation methods were designed, optimized and tested in a field trial. These protocols were compared with a control immediately frozen after collection. Pigments and tocopherols were analysed by HPLC. Main artefacts were chlorophyll epimerization or phaeophytinization, carotenoid isomerization, altered de-epoxidation index and tocopherol degradation. Among all methods, sample desiccation in silica gel provides robust samples (pigment composition was unaffected by storage time or temperature) and almost unaltered pigment profiles, except for a shift in epoxidation state. Although liquid nitrogen freezing and subsequent lyophilization or freezer storage were preferred, when these facilities are either not available or not suitable for long-distance transport, desiccation with silica gel, passive extraction in acetone and/or storage of fresh samples in water vapour saturated atmospheres enable a complete pigment characterization. Silica gel is advisable for long-term sample conservation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abadía J, Abadía A (1993) Iron and plant pigments. In: Barton LL, Hemming BH (eds) Iron chelation in plants and soil microorganisms. Academic Press, San Diego

  • Barker DH, Logan BA, Adams WW, Demmig-Adams B (1998) Photochemistry and xanthophyll cycle-dependent energy dissipation in differently oriented cladodes of Opuntia stricta during the winter. Aust J Plant Physiol 25:95–104

    CAS  Google Scholar 

  • Barker DH, Adams WW, Demmig-Adams B, Logan BA, Verhoeven AS, Smith SD (2002) Nocturnally retained zeaxanthin does not remain engaged in a state primed for energy dissipation during the summer in two Yuca species growing in the Mojave Desert. Plant Cell Environ 25:95–103. doi:10.1046/j.0016-8025.2001.00803.x

    Article  CAS  Google Scholar 

  • Barnes JD, Balaguer L, Manrique E, Elvira S, Davison AW (1992) A reappraisal of the use of DMSO for the extraction and determination of chlorophylls a and b in lichens and higher plants. Environ Exp Bot 32:85–100. doi:10.1016/0098-8472(92)90034-Y

    Article  CAS  Google Scholar 

  • Barth C, Krause GH, Winter K (2001) Responses of photosystem I compared with photosystem II to high-light stress in tropical shade and sun leaves. Plant Cell Environ 24:163–176. doi:10.1111/j.1365-3040.2001.00673.x

    Article  CAS  Google Scholar 

  • Cherian M, Corona E (2006) Lyophilisation of biologicals. In: Bioprocessing and biopartnering. Touch Briefings, London, UK, pp 20–21

    Google Scholar 

  • de las Rivas J, Abadía A, Abadía J (1989) A new reversed phase-HPLC method resolving all major higher plant photosynthetic pigments. Plant Physiol 91:190–192. doi:10.1104/pp.91.1.190

    Article  PubMed  CAS  Google Scholar 

  • Dunn JL, Turnbull JD, Robinson SA (2004) Comparison of solvent regimes for the extraction of photosynthetic pigments from leaves of higher plants. Funct Plant Biol 31:195–202. doi:10.1071/FP03162

    Article  CAS  Google Scholar 

  • García-Plazaola JI, Becerril JM (1999) A rapid HPLC method to measure lipophilic antioxidants in stressed plants: simultaneous determination of carotenoids and tocopherols. Phytochem Anal 10:307–313. doi:10.1002/(SICI)1099-1565(199911/12)10:6<307::AID-PCA477>3.0.CO;2-L

    Article  Google Scholar 

  • García-Plazaola JI, Becerril JM (2001) Seasonal changes in photosynthetic pigments and antioxidants in beech (Fagus sylvatica) in a Mediterranean climate: implications for tree decline diagnosis. Aust J Plant Physiol 28:225–232

    Google Scholar 

  • Gilmore AM, Yamamoto HY (1991) Resolution of lutein and zeaxanthin using a nonencapped, lightly carbon-loaded C-18 HPLC column. J Chromatogr A 543:137–145. doi:10.1016/S0021-9673(01)95762-0

    Article  CAS  Google Scholar 

  • Hyvärinen K, Hynninen PH (1999) Liquid chromatographic separation and mass spectrometric identification of chlorophyll b allomers. J Chromatogr A 837:107–116. doi:10.1016/S0021-9673(99)00059-X

    Article  Google Scholar 

  • Kemp IC, Fyhr BC, Laurent S, Roques MA, Groenewold CE, Tsotsas E, Sereno AA, Bonazzi CB, Bimbenet JJ, Kind M (2001) Methods for processing experimental drying kinetics data. Dry Technol 19:15–34. doi:10.1081/DRT-100001350

    Article  CAS  Google Scholar 

  • Kyparissis A, Petropoulu Y, Manetas Y (1995) Summer survival of leaves in a soft-leaved shrub (Phlomis fruticosa L., Labiatae) under Mediterranean field conditions: avoidance of photoinhibitory damage through decreased chlorophyll contents. J Exp Bot 46:1825–1831. doi:10.1093/jxb/46.12.1825

    Article  CAS  Google Scholar 

  • Logan BA, Barker DH, Demmig-Adams B, Adams WW (1996) Acclimation of leaf carotenoid composition and ascorbate levels to gradients in the light environment within an Australian rainforest. Plant Cell Environ 19:1083–1090. doi:10.1111/j.1365-3040.1996.tb00215.x

    Article  CAS  Google Scholar 

  • Matsubara S, Naumann M, Martin R, Nichol C, Rascher U, Morosinotto T, Bassi R, Osmond CB (2005) Slowly reversible de-epoxidation of lutein-epoxide in deep shade leaves of a tropical tree legume may “lock in” lutein-based photoprotection during acclimation to strong light. J Exp Bot 56:461–468. doi:10.1093/jxb/eri012

    Article  PubMed  CAS  Google Scholar 

  • Matsubara S, Krause GH, Seltmann M, Virgo A, Kursar TA, Jahns P, Winter K (2008) Lutein epoxide cycle, light harvesting and photoprotection in species of the tropical tree genus Inga. Plant Cell Environ 31:548–561. doi:10.1111/j.1365-3040.2008.01788.x

    Article  PubMed  CAS  Google Scholar 

  • Niinemets Ü, Bilger W, Kull O, Tenhunen JD (1998) Acclimation to high irradiance in temperate deciduous trees in the field: changes in xanthophyll cycle pool size and in photosynthetic capacity along a canopy light gradient. Plant Cell Environ 21:1205–1218. doi:10.1046/j.1365-3040.1998.00364.x

    Article  CAS  Google Scholar 

  • Schiefthaler U, Russell AW, Bolhàr-Nordenkampf HR, Critchley C (1999) Photoregulation and photodamage in Schefflera arboricola leaves adapted to different light environments. Aust J Plant Physiol 26:485–494

    Article  Google Scholar 

  • Slot M, Wirth C, Schumacher J, Mohren GMJ, Shibitsova O, Lloyd J, Ensminger I (2005) Regeneration patterns in boreal Scots pine glades linked to cold-induced photoinhibition. Tree Physiol 25:1139–1150

    PubMed  Google Scholar 

  • Streb P, Shang W, Feierabend J, Bligny R (1998) Divergent strategies of photoprotection in high-mountain plants. Planta 207:313–324. doi:10.1007/s004250050488

    Article  CAS  Google Scholar 

  • Tausz M, Hietz P, Briones O (2001) The significance of carotenoids and tocopherols in photoprotection of seven epiphytic fern species of a Mexican cloud forest. Aust J Plant Physiol 28:1–9

    Google Scholar 

  • Tausz M, Wonisch A, Grill D, Morales D, Jiménez MS (2003) Measuring antioxidants in tree species in the natural environment: from sampling to data evaluation. J Exp Bot 387:1505–1510. doi:10.1093/jxb/erg175

    Article  CAS  Google Scholar 

  • Thayer SS, Björkman O (1990) Leaf xanthophyll content and composition in sun and shade determined by HPLC. Photosynth Res 23:331–343. doi:10.1007/BF00034864

    Article  CAS  Google Scholar 

  • Thiele A, Krause GH, Winter K (1998) In situ study of photoinhibition of photosynthesis and xanthophyll cycle activity in plants growing in natural gaps of the tropical forest. Aust J Plant Physiol 25:185–195

    Google Scholar 

  • van Leeuwe MA, Villerius LA, Roggeveld J, Visser RJW, Stefels J (2006) An optimized method for automated analysis of algal pigments by HPLC. Mar Chem 102:267–275. doi:10.1016/j.marchem.2006.05.003

    Article  CAS  Google Scholar 

  • Young AJ, Phillip D, Savill J (1997a) Carotenoids in higher plant photosynthesis. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker Inc., New York, pp 575–596

    Google Scholar 

  • Young AJ, Phillip D, Savill J (1997b) Methods for carotenoid analysis. In: Pessaraki M (ed) Handbook of photosynthesis. Marcel Dekker Inc., New York, pp 597–622

    Google Scholar 

  • Zarter CR, Demmig-Adams B, Ebbert V, Adamska I, Adams WW (2006) Photosynthetic capacity and light harvesting efficiency during the winter-to-spring transition in subalpine conifers. New Phytol 172:283–292. doi:10.1111/j.1469-8137.2006.01816.x

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Beatriz Fernandez-Marín and Noé Velazquez for help during analyses. R. E. received a doctoral grant from the Basque Government and M. P.-M. from the University of Barcelona. Funding for this research was provided by the Spanish Ministry of Education and Science (projects BFU 2007-62637, CGL 2005-03062/BOS, CGL2005-03998/BOS) and by the Basque Government (project UPV/EHU-GV IT-299-07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ignacio García-Plazaola.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esteban, R., Balaguer, L., Manrique, E. et al. Alternative methods for sampling and preservation of photosynthetic pigments and tocopherols in plant material from remote locations. Photosynth Res 101, 77–88 (2009). https://doi.org/10.1007/s11120-009-9468-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-009-9468-5

Keywords

Navigation