Skip to main content
Log in

Dynamics of higher plant photosystem cross-section associated with state transitions

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Photosynthetic state transitions are a well-known phenomenon of short-term adaptation of the photosynthetic membrane to changes in spectral quality of light in low light environments. The principles of the monitoring and quantification of the process in higher plants are revised here. The use of the low-temperature excitation fluorescence spectroscopy for analysis of the photosystem I antenna cross-section dynamics is described. This cross section was found to increase by 20–25% exclusively due to the migration and attachment of LHCIIb complex in State 2. Analysis of the fine structure of the additional PSI cross-section spectrum revealed the 510 nm band, characteristic of Lutein 2 of LHCIIb and present only when the complex is in a trimeric state. The excitation fluorescence spectrum of the phospho-LHCII resembles the spectrum of aggregated and hence quenched LHCII. This novel observation could explain the fact that at no point in the course of the state transition high fluorescence and long lifetime components of detached trimeric LHCII have ever been observed. In the plants lacking Lhcb1 and 2 proteins and unable to perform state transitions, compensatory sustained adjustments of the photosystem I and II antennae have been revealed. Whilst the major part of the photosystem II antenna is built largely of CP26 trimers, possessing less chlorophyll b and more of the red-shifted chlorophyll a, photosystem I in these plants contains more than 20% of extra LHCI antenna enriched in chlorophyll b. Hence, both photosystems in the plants lacking state transitions have less spectrally distinct antennae, which enable to avoid energy imbalance due to the changes in the light quality. These alterations reveal remarkable plasticity of the higher plant photosynthetic antenna design providing the basis for a flexible adaptation to the light environment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

LHCIIb:

The major light harvesting complex of photosystem II

PSI and II:

Photosystems I and II

CP26:

A minor antenna complex of photosystem II

PAM:

Pulse amplitude modulated

NPQ:

Nonphotochemical fluorescence quenching

OD:

Optical density

T:

Transmission

F o and F m :

Fluorescence levels when all PSII reaction centres are open or closed, respectively

F v :

Variable fluorescence (F v = F m − F o)

References

  • Allen JF, Forsberg J (2001) Molecular recognition in thylakoid structure and function. Trends Plant Sci 6:317–326

    Article  PubMed  CAS  Google Scholar 

  • Allen JF, Melis A (1988) The rate of P700 photooxidation under continuous illumination is independent of state-1–state-2-transitions in green algae Scenedesmus obliquus. Biochim Biophys Acta 933:95–106

    Article  CAS  Google Scholar 

  • Allen JF, Bennett J, Steinback KE et al (1981) Chloroplast protein phosphorylation couples plastoquinone redox state to distribution of excitation energy between photosystems. Nature 291:1–5

    Article  Google Scholar 

  • Amunts A, Drory O, Nelson N (2007) The structure of a plant photosystem I supercomplex at 3.4 Å resolution. Nature 447:58–63

    Article  PubMed  CAS  Google Scholar 

  • Anderson J, Wentworth M, Walters RG, Howard C, Ruban AV, Horton P, Jansson S (2003) Absence of Lhcb1 and Lhcb2 proteins of the light-harvesting complex of photosystem II-effects on photosynthesis, grana stacking and fitness. Plant J 35:350–361

    Article  Google Scholar 

  • Andersson B, Åkerlund H-E, Jergil B, Larsson C (1982) Differential phosphorylation of the light-harvesting chlorophyll-protein complex in appressed and non-appressed regions of the thylakoid membrane. FEBS Lett 149:181–185

    Article  CAS  Google Scholar 

  • Arntzen JC, Dito CL (1976) Effects of cations upon chloroplast membrane subunit interactions and excitation energy distribution. Biochim Biophys Acta 449:259–274

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1980) An explanation for the relationship between salt-induced thylakoid stacking and the chlorophyll fluorescence changes associated with changes in spillover of energy from photosystem II to photosystem I. FEBS Lett 118:1–10

    Article  CAS  Google Scholar 

  • Bennett J (1977) Phosphorylation of chloroplast membrane proteins. Nature 269:344–346

    Article  CAS  Google Scholar 

  • Bennett J (1983) Regulation of photosynthesis by reversible phosphorylation of the light-harvesting chlorophyll a/b protein. Biochem J 212:1–13

    PubMed  CAS  Google Scholar 

  • Bennett J (1984) Chloroplast protein phosphorylation and the regulation of photosynthesis. Physiol Plant 60:583–590

    Article  CAS  Google Scholar 

  • Bennett J, Steinback KE, Arntzen CJ (1980) Chloroplast phosphoproteins: regulation of excitation energy transfer by phosphorylation of thylakoid membranes. Proc Natl Acad Sci USA 77:5253–5257

    Article  PubMed  CAS  Google Scholar 

  • Black MT, Horton P (1984) An investigation into the mechanistic aspects of excitation redistribution following thylakoid membrane protein phosphorylation. Biochim Biophys Acta 767:568–573

    Article  CAS  Google Scholar 

  • Bonaventura C, Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189:366–383

    Article  PubMed  CAS  Google Scholar 

  • Butler WL (1978) Energy distribution in the photochemical apparatus of photosynthesis. Annu Rev Plant Physiol 29:345–378

    Article  CAS  Google Scholar 

  • Chow WS, Telfer A, Chapman DJ et al (1981) State 1–State 2 transitions in leaves and its association with ATP induced chlorophyll fluorescence quenching. Biochim Biophys Acta 638:60–68

    Google Scholar 

  • Dau H, Hansen U-P (1988) The involvement of spillover changes in State 1–State 2 transitions in intact leaves at low light intensities. Biochim Biophys Acta 934:156–159

    Article  CAS  Google Scholar 

  • Farchaus JW, Widger WR, Cramer WA, Dilley RA (1982) Kinase-induced changes in electron transport rates of spinach chloroplasts. Arch Biochem Biophys 217:362–367

    Article  PubMed  CAS  Google Scholar 

  • Forti G, Vianelli A (1988) Influence of thylakoid protein phosphorylation on photosystem I photochemistry. FEBS Lett 231:95–97 638:60–68

    Google Scholar 

  • Haworth P, Melis A (1983) Phosphorylation of chloroplast thylakoid membrane proteins does not increase the absorption cross-section of photosystem I. FEBS Lett 160:277–280

    Article  CAS  Google Scholar 

  • Haworth P, Kyle DJ, Horton P, Arntzen CJ (1982) Chloroplast membrane protein phosphorylation. Photochem Photobiol 36:743–748

    Article  CAS  Google Scholar 

  • Horton P (1983) Control of chloroplast electron transport by phosphorylation of thylakoid proteins. FEBS Lett 152:47–52

    Article  CAS  Google Scholar 

  • Horton P, Black MT (1980) Activation of adenosine 5′-triphosphate induced quenching of chlorophyll fluorescence by reduced plastoquinone. The basis of State I–State II transitions in chloroplasts. FEBS Lett 119:141–144

    Article  CAS  Google Scholar 

  • Horton P, Black MT (1982) On the nature of the fluorescence decrease due to phosphorylation of chloroplast membrane proteins. Biochim Biophys Acta 680:22–27

    Article  CAS  Google Scholar 

  • Horton P, Black MT (1983) A comparison between cation and protein phosphorylation effects on the fluorescence induction curve in chloroplasts treated with 3-(3, 4-dichlorophenyl)-1, 1-dimethylurea. Biochim Biophys Acta 722:214–218

    Article  CAS  Google Scholar 

  • Horton P, Allen JF, Black MT, Bennett J (1981) Regulation of phosphorylation of chloroplast membrane proteins by the redox state of plastoquinone. FEBS Lett 125:193–196

    Article  CAS  Google Scholar 

  • Jennings RC, Islam K, Zucchelli G (1986) spinach-thylakoid phosphorylation: studies on the kinetics of changes in photosystem antenna size, spill-over and phosphorylation of light-harvesting chlorophyll a/b protein. Biochim Biophys Acta 850:483–489

    Article  CAS  Google Scholar 

  • Kouril R, Zygadlo A, Arteni AA, de Wit CD, Dekker JP, Jensen P-E, Scheller HV, Boekema EJ (2005) Structural characterization of a complex of photosystem I and light-harvesting complex II of Arabidopsis thaliana. Biochemistry 44:10935–10940

    Article  PubMed  CAS  Google Scholar 

  • Kyle DJ, Haworth P, Arntzen CJ (1982) Thylakoid membrane protein phosphorylation leads to a decrease in connectivity between photosystem II reaction centers. Biochim Biophys Acta 680:336–342

    Article  CAS  Google Scholar 

  • Kyle DJ, Staehelin LA, Arntzen CJ (1983) Lateral mobility of the light-harvesting complex in chloroplast membranes controls excitation energy distribution in higher plants. Arch Biochem Biophys 222:527–541

    Article  PubMed  CAS  Google Scholar 

  • Kyle DJ, Kuang T-Y, Watson JL, Arntzen CJ (1984) Movement of a sub-population of the light harvesting complex (LHCII) from grana to stroma lamellae as a consequence of its phosphorylation. Biochim Biophys Acta 765:89–96

    Article  CAS  Google Scholar 

  • Larsson UK, Andersson B (1985) Different degrees of phosphorylation and lateral mobility of two polypeptides belonging to the light-harvesting complex of PSII. Biochim Biophys Acta 809:396–402

    Article  CAS  Google Scholar 

  • Larsson UK, Ogren E, Oquist G, Andersson B (1986) Electron transport and fluorescence studies on the functional interaction between phospho-LHCII and Photosystem I in isolated stroma lamellae vesicles. Photobiochem Photobiophys 13:29–39

    CAS  Google Scholar 

  • Murata N (1969a) Control of excitation transfer in photosynthesis. I. Light-induced change of chlorophyll a fluorescence in Porphyridium cruentum. Biochim Biophys Acta 172:242–251

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1969b) control of excitation transfer in photosynthesis. II. Magnesium ion-dependent distribution of excitation energy between two pigment systems in spinach chloroplasts. Biochim Biophys Acta 189:171–181

    Article  PubMed  CAS  Google Scholar 

  • Myers J (1971) Enhancement studies in photosynthesis. Annu Rev Plant Physiol 22:289–312

    Article  CAS  Google Scholar 

  • Nilsson A, Stys D, Drakenberg T, Spanford MD, Forsén S, Allen JF (1997) Phosphorylation controls the three-dimensional structure of plant light harvesting complex II. J Biol Chem 272:18350–18357

    Article  PubMed  CAS  Google Scholar 

  • Owens GC, Ohad I (1982) Phosphorylation of Chlamidomonas reinhardii chloroplast membrane proteins in vivo and in vitro. J Cell Biol 93:712–718

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV (1991) The use of excitation fluorescence spectroscopy in the study of short-term chloroplast membrane reorganisation. Biochim Biophys Acta 1058:411–415

    Article  Google Scholar 

  • Ruban AV, Horton P (1992) Mechanism of ΔpH-dependent dissipation of absorbed excitation energy by photosynthetic membranes. I Spectroscopic analysis of isolated light harvesting complexes. Biochim Biophys Acta 1102:30–38

    Article  CAS  Google Scholar 

  • Ruban AV, Trach VV (1991) Heat-induced reversible changes in photosystem 1 absorption cross-section of pea chloroplasts and sub-chloroplast preparations. Photosynth Res 29:157–169

    CAS  Google Scholar 

  • Ruban AV, Calkoen F, Kwa SLS, van Grondelle R, Horton P, Dekker JP (1997) Characterisation of the aggregated state of the light harvesting complex of photosystem II by linear and circular dichroism spectroscopy. Biochim Biophys Acta 1321:61–70

    Article  CAS  Google Scholar 

  • Ruban AV, Pascal A, Robert B (2000) Xanthophylls of the major photosynthetic light-harvesting complex of plants: identification, conformation and dynamics. FEBS Lett 477:181–185

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Pascal AA, Robert B, Horton P (2001) Configuration and dynamics of carotenoids in light-harvesting antennae of the thylakoid membrane. J Biol Chem 276:24862–24870

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Wentworth M, Yakushevska AE, Keegstra W, Lee PJ, Dekker JP, Jansson S, Boekema E, Horton P (2003) Plants lacking the main light harvesting complex retain photosystem II macro-organisation. Nature 421:648–652

    Article  PubMed  CAS  Google Scholar 

  • Ruban AV, Solovieva S, Lee PJ, Ilioaia C, Wentworth M, Ganeteg U, Klimmek F, Chow WC, Anderson JM, Jansson S, Horton P (2006) Plasticity in the composition of the light harvesting antenna of higher plants preserves structural integrity and biological function. J Biol Chem 281:14981–14990

    Article  PubMed  CAS  Google Scholar 

  • Schreiber U (1986) Detection of rapid induction kinetics with a new type of high-frequency modulated chlorophyll fluorometer. Photosynth Res 9:261–272

    Article  CAS  Google Scholar 

  • Sinclair J, Cousineau C (1981) The effect of adenosine-5′-triphosphate on oxygen-evolution, fluorescence emission and Emerson enhancement effect. FEBS Lett 136:213–215

    Article  CAS  Google Scholar 

  • Sundby C, Andersson B (1985) Temperature-induced reversible migration along the thylakoid membrane of photosystem II regulates its association with LHC-II. FEBS Lett 191:24–28

    Article  CAS  Google Scholar 

  • Telfer A, Allen JF, Barber J, Bennett J (1983) Thylakoid protein phosphorylation during State 1–State 2 transitions in osmotically shocked pea chloroplasts. Biochim Biophys Acta 722:176–181

    Article  CAS  Google Scholar 

  • Telfer A, Bottin H, Barber J, Mathis P (1984) The effect of magnesium and phosphorylation of light-harvesting chlorophyll a/b protein on the yield of P700 photooxidation in pea chloroplasts. Biochim Biophys Acta 764:324–330

    Article  CAS  Google Scholar 

  • Tikkanen M, Nurmi M, Suorsa M, Danielsson R, Mamedov F, Styring S, Aro E-M (2008) Phosphorylation-dependent regulation of excitation energy distribution between the two photosystems in higher plants. Biochim Biophys Acta. doi:10.1016/j.bbabio.2008.02.001

    Google Scholar 

  • van Grondelle R, Novoderezhkin VI (2006) Energy transfer in photosynthesis: experimental insights and quantitative models. Phys Chem Chem Phys 8:798–807

    Google Scholar 

  • Weis E (1985) Light- and temperature-induced changes in the redistribution of excitation energy between photosystem I and photosystem II in spinach leaves. Biochim Biophys Acta 807:118–126

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We would like to acknowledge BBSRC and The Royal Society for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander V. Ruban.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ruban, A.V., Johnson, M.P. Dynamics of higher plant photosystem cross-section associated with state transitions. Photosynth Res 99, 173–183 (2009). https://doi.org/10.1007/s11120-008-9387-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9387-x

Keywords

Navigation