Skip to main content
Log in

Decoupling of the processes of molecular oxygen synthesis and electron transport in Ca2+-depleted PSII membranes

  • Regular Paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Extraction of Ca2+ from the O2-evolving complex (OEC) of photosystem II (PSII) membranes with 2 M NaCl in the light (PSII(–Ca/NaCl)) results in 90% inhibition of the O2-evolution reaction. However, electron transfer from the donor to acceptor side of PSII, measured as the reduction of the exogenous acceptor 2,6-dichlorophenolindophenol (DCIP) under continuous light, is inhibited by only 30%. Thus, calcium extraction from the OEC inhibits the synthesis of molecular O2 but not the oxidation of a substrate we term X, the source of electrons for DCIP reduction. The presence of electron transfer across PSII(–Ca/NaCl) membranes was demonstrated using fluorescence induction kinetics, a method that does not require an artificial acceptor. The calcium chelator, EGTA (5 mM), when added to PSII(–Ca/NaCl) membranes, does not affect the inhibition of O2 evolution by NaCl but does inhibit DCIP reduction up to 92% (the reason why electron transport in Ca2+-depleted materials has not been noticed before). Another chelator, sodium citrate (citrate/low pH method of calcium extraction), also inhibits both O2 evolution and DCIP reduction. The role of all buffer components (including bicarbonate and sucrose) as possible sources of electrons for PSII(–Ca/NaCl) membranes was investigated, but only the absence of chloride anions strongly inhibited the rate of DCIP reduction. Substitution of other anions for chloride indicates that Cl serves its well-known role as an OEC cofactor, but it is not substrate X. Multiple turnover flash experiments have shown a period of four oscillations of the fluorescence yield (both the maximum level, F max, and the fluorescence level measured 50 s after an actinic flash in the presence of DCMU) in native PSII membranes, reflecting the normal function of the OEC, but the absence of oscillations in PSII(–Ca/NaCl) samples. Thus, PSII(–Ca/NaCl) samples do not evolve O2 but do transfer electrons from the donor to acceptor sides and exhibit a disrupted S-state cycle. We explain these results as follows. In Ca2+-depleted PSII membranes, obtained without chelators, the oxidation of the OEC stops after the absorption of three quanta of light (from the S1 state), which should convert the native OEC to the S4 state. An one-electron oxidation of the water molecule bound to the Mn cluster then occurs (the second substrate water molecule is absent due to the absence of calcium), and the OEC returns to the S3 state. The appearance of a sub-cycle within the S-state cycle between S3-like and S4-like states supplies electrons (substrate X is postulated to be OH), explains the absence of O2 production, and results in the absence of a period of four oscillation of the normal functional parameters, such as the fluorescence yield or the EPR signal from S2. Chloride anions probably keep the redox potential of the Mn cluster low enough for its oxidation by Y Z .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme 1

Similar content being viewed by others

Abbreviations

Chl:

Chlorophyll

DCMU:

3-(3,4-Dichlorophenyl)-1,1-dimethylurea

DCIP:

2,6-Dichlorophenolindophenol

EGTA:

Ethylene glycol-bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetic acid

EDTA:

Ethylenediaminetetraacetic acid

F o :

Minimal fluorescence of “open” reaction centers in dark-adapted samples

F max :

Maximum fluorescence yield

FIK:

Fluorescence induction kinetics

FYD:

Pulse-probe fluorescence yield decay kinetics

MES:

2-(N-morpholino)ethanesulfonic acid

OEC:

Oxygen-evolving complex

PSII:

Photosystem II

PSII(–Mn):

Mn-depleted photosystem II

PSII(–Ca/NaCl):

Photosystem II with Ca2+ extracted by treatment with 2 M NaCl

PSII(–Ca/NaCl + 50 μM EGTA):

Photosystem II with Ca2+ extracted by treatment with 2 M NaCl in the presence of 50 μM EGTA

PSII(–Ca/NaCl + 5 mM EGTA):

Photosystem II with Ca2+ extracted by treatment with 2 M NaCl in the presence of 5 mM EGTA

PSII(–Ca/NaCl + 5 mM EGTA→ –EGTA):

Photosystem II with Ca2+ extracted by treatment with 2 M NaCl in the presence of 5 mM EGTA and subsequent washing free of EGTA

PSII(–Ca/pH 3.0):

Photosystem II with Ca2+ extracted by treatment with citrate buffer (pH 3.0)

YZ :

Tyrosine 161 on the D1 protein in spinach, the first electron donor to P680+ in PSII

References

  • Ananyev G, Wydrzynski T, Renger G, Klimov V (1992) Transeint peroxide formation by the manganese-containing, redox-active donor side of photosystem II upon inhibition of O2 evolution with lauroylchloline chloride. Biochim Biophys Acta 1100:303–311

    Google Scholar 

  • Andréasson L-E, Vass I, Styring S (1995) Ca2+ depletion modifies the electron transfer on both donor and acceptor sides in photosystem II from spinach. Biochim Biophys Acta 1230:155–164. doi:10.1016/0005-2728(95)00047-M

    Article  Google Scholar 

  • Armstrong JM (1964) The molar extinction coefficient of 2,6-dichlorophenol indophenol. Biochim Biophys Acta 86:194–197

    PubMed  CAS  Google Scholar 

  • Arnon DJ (1949) Copper enzymes in isolated chloroplast: polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–15

    Article  PubMed  CAS  Google Scholar 

  • Baumgarten M, Philo JS, Dismukes GC (1990) Mechanism of photoinhibition of photosynthetic water oxidation by chloride depletion and fluoride substitution: oxidation of a protein residue. Biochemistry 29:10814–10822. doi:10.1021/bi00500a014

    Article  PubMed  CAS  Google Scholar 

  • Blough NV, Sauer K (1984) The effects of mono- and divalent salts on the O2-evolution activity and low temperature multiline EPR spectrum of photosystem II preparations from spinach. Biochim Biophys Acta 767:377–381. doi:10.1016/0005-2728(84)90208-1

    Article  PubMed  CAS  Google Scholar 

  • Blubaugh DJ, Cheniae GM (1990) Kinetics of photoinhibition in hydroxylamine-extracted photosystem II membranes: relevance to photoactivation and sites of electron donation. Biochemistry 29:5109–5118. doi:10.1021/bi00473a016

    Article  PubMed  CAS  Google Scholar 

  • Boussac A, Rutherford AW (1988) Nature of the inhibition of the oxygen-evolving enzyme of photosystem II induced by sodium chloride washing and reversed by the addition of calcium(2+) or strontium(2+). Biochemistry 27:3476–3483. doi:10.1021/bi00409a052

    Article  CAS  Google Scholar 

  • Boussac A, Rutherford AW (1992) The involvement of Ca2+ in the Ca2+-effect on Photosystem-II oxygen evolution. Photosynth Res 32:207–209. doi:10.1007/BF00034796

    Article  CAS  Google Scholar 

  • Boussac A, Rutherford AW (1994) Electron transfer events in chloride-depleted photosystem II. J Biol Chem 269:12462–12467

    PubMed  CAS  Google Scholar 

  • Boussac A, Maison-Peteri B, Vernotte C, Etienne AL (1985) The charge accumulation mechanism in NaCl-washed and in Ca2+-reactivated Photosystem-II particles. Biochim Biophys Acta 808:225–230. doi:10.1016/0005-2728(85)90003-9

    Article  CAS  Google Scholar 

  • Boussac A, Zimmermann J-L, Rutherford AW (1989) EPR signals from modified charge accumulation states of the oxygen evolving enzyme in Ca2+-deficient photosystem II. Biochemistry 28:8984–8989. doi:10.1021/bi00449a005

    Article  PubMed  CAS  Google Scholar 

  • Boussac A, Zimmermann JL, Rutherford AW (1990a) Factors influencing the formation of modified S2 EPR signal and the S3 EPR signal in Ca(2+)-depleted photosystem II. FEBS Lett 277:69–74. doi:10.1016/0014-5793(90)80811-V

    Article  PubMed  CAS  Google Scholar 

  • Boussac A, Zimmermann JL, Rutherford AW, Lavergne J (1990b) Histidine oxidation in the oxygen-evolving photosystem-II enzyme. Nature 347:303–306. doi:10.1038/347303a0

    Article  CAS  Google Scholar 

  • Boussac A, Sètif P, Rutherford AW (1992) Inhibition of tyrosine Z photooxidation after formation of the S3-state in calcium-depleted and chloride-depleted photosystem-II. Biochemistry 31:1224–1234. doi:10.1021/bi00119a036

    Article  PubMed  CAS  Google Scholar 

  • Bryson DJ, Doctor N, Johnson R, Baranov S, Haddy A (2005) Characteristics of iodide activation and inhibition of oxygen evolution by photosystem II. Biochemistry 44:7354–7360. doi:10.1021/bi047475d

    Article  PubMed  CAS  Google Scholar 

  • Cammarata KV, Cheniae GM (1987) Studies on 17,24 kD depleted photosystem II membranes I. Evidences for high and low affinity calcium sites in 17,24 kD depleted PSII membranes from wheat versus spinach. Plant Physiol 84:587–595

    PubMed  CAS  Google Scholar 

  • Chu H-A, Nguyen AP, Debus RJ (1995) Amino acid residues that influence the binding of manganese or calcium to photosystem II. 1. The lumenal interhelical domains of the D1 polypeptide. Biochemistry 34:5839–5858. doi:10.1021/bi00017a016

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352. doi:10.1016/0005-2728(92)90133-M

    Article  PubMed  CAS  Google Scholar 

  • Ghanotakis DF, Babcock GT, Yocum CF (1984a) Calcium reconstitutes high rates of oxygen evolution in polypeptide depleted photosystem II preparations. FEBS Lett 167:127–130. doi:10.1016/0014-5793(84)80846-7

    Article  CAS  Google Scholar 

  • Ghanotakis DF, Babckock GT, Yocum CF (1984b) Water-soluble 17 and 23 kDa polypeptides restore oxygen evolution activity by creating a high-affinity binding site for Ca2+ the oxidizing side of photosystem II. FEBS Lett 170:169–173. doi:10.1016/0014-5793(84)81393-9

    Article  CAS  Google Scholar 

  • Ghirardi ML, Lutton TW, Seibert M (1996) Interactions between diphenylcarbazide, zinc, cobalt, and manganese on the oxidizing side of photosystem II. Biochemistry 35:1820–1828. doi:10.1021/bi951657d

    Article  PubMed  CAS  Google Scholar 

  • Haddy A (2007) EPR spectroscopy of the manganese clusters of photosystem II. Photosynth Res 92:357–368. doi:10.1007/s11120-007-9194-9

    Article  PubMed  CAS  Google Scholar 

  • Hallahan BJ, Nugent JHA, Warden JT, Evans MCW (1992) Investigation of the origin of the “S3” EPR signal from the oxygen-evolving complex of photosystem 2: the role of tyrosine Z. Biochemistry 31:4562–4573. doi:10.1021/bi00134a005

    Article  PubMed  CAS  Google Scholar 

  • Halverson KM, Barry BA (2003) Sucrose and glycerol effects on photosystem II. Biophys J 85:1317–1325

    PubMed  CAS  Google Scholar 

  • Hasegawa K, Kimura Y, Ono T (2002) Chloride cofactor in the photosynthetic oxygen-evolving complex studied by Fourier transform infrared spectroscopy. Biochemistry 41:13839–13850. doi:10.1021/bi026595n

    Article  PubMed  CAS  Google Scholar 

  • Haumann M, Junge W (1999) Evidence for empaired hydrogen-bonding of tyrosine Yz in calcium-depleted photosystem II. Biochim Biophys Acta 1411:121–133. doi:10.1016/S0005-2728(99)00045-6

    Article  PubMed  CAS  Google Scholar 

  • Hendry G, Wydrzynski T (2003) 18O isotope exchange measurements reveal that calcium is involved in the binding of one substrate-water molecule to the oxygen-evolving complex in photosystem II. Biochemistry 42:6209–6217. doi:10.1021/bi034279i

    Article  PubMed  CAS  Google Scholar 

  • Homann PH (1988) Chloride relations of photosystem II membrane preparations depleted of, and resupplied with, their 17 and 23 kDa extrinsic polypeptides. Photosynth Res 15:205–220. doi:10.1007/BF00047353

    Article  CAS  Google Scholar 

  • Homann PH (1993) Thermoluminescence properties of the S2-state in chloride-depleted water oxidizing complexes after reconstituting treatments with various monovalent anions. Photosynth Res 38:395–400. doi:10.1007/BF00046766

    Article  CAS  Google Scholar 

  • Jajoo A, Bharti S, Kawamori A (2005) EPR characteristics of chloride-depleted photosystem II membranes in the presence of other anions. Photochem Photobiol Sci 4:459–462. doi:10.1039/b414849e

    Article  PubMed  CAS  Google Scholar 

  • Lazar D (1999) Chlorophyll a fluorescence induction. Biochim Biophys Acta 1412:1–28. doi:10.1016/S0005-2728(99)00047-X

    Article  PubMed  CAS  Google Scholar 

  • Lindberg K, Andréasson LE (1996) A one-site, two-state model for the binding of anions in photosystem II. Biochemistry 35:14259–14267. doi:10.1021/bi961244s

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438:1040–1044. doi:10.1038/nature04224

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4482. doi:10.1021/cr0204294

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Garcon JA, Batista VS, Brudvig GW (2005) Mechanism of photosynthetic water splitting. Photochem Photobiol Sci 4:940–949. doi:10.1039/b506755c

    Article  PubMed  CAS  Google Scholar 

  • Metz JG, Nixon PJ, Rögner M, Brudwig GW, Diner BA (1989) Directed alteration of the D1 polypeptide of photosystem II: evidence that tyrosine-161 is the redox component, Z, connecting the oxygen-evolving complex to the primary electron donor, P680. Biochemistry 28:6960–6969. doi:10.1021/bi00443a028

    Article  PubMed  CAS  Google Scholar 

  • Miqyass M, van Gorkom HJ, Yocum CF (2007) The PSII calcium site revisited. Photosynth Res 92:275–287. doi:10.1007/s11120-006-9124-2

    Article  PubMed  CAS  Google Scholar 

  • Miyao M, Murata N (1984) Calcium ions can be substituted for the 24-kDa polypeptide in photosynthetic oxygen evolution. FEBS Lett 168:118–120. doi:10.1016/0014-5793(84)80218-5

    Article  CAS  Google Scholar 

  • Miyao M, Murata N (1985) The Cl effect on photosynthetic oxygen evolution: interaction of Cl with 18-kDa, 24-kDa and 33-kDa proteins. FEBS Lett 180:303–308. doi:10.1016/0014-5793(85)81091-7

    Article  CAS  Google Scholar 

  • Nakatani HY (1984) Photosynthetic oxygen evolution does not require the participation of polypeptides of 16 and 24 kilodaltons. Biochem Biophys Res Commun 120:299–304. doi:10.1016/0006-291X(84)91448-7

    Article  PubMed  CAS  Google Scholar 

  • Nelson N, Yocum CF (2006) Structure and function of photosystems I and II. Annu Rev Plant Biol 57:521–565. doi:10.1146/annurev.arplant.57.032905.105350

    Article  PubMed  CAS  Google Scholar 

  • Olesen K, Andréasson LE (2003) The function of the chloride ion in photosynthetic oxygen evolution. Biochemistry 42:2025–2035. doi:10.1021/bi026175y

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Inoue Y (1988) Discrete extraction of the Ca atom functional for O2 evolution in higher plant photosystem II by a simple low pH treatment. FEBS Lett 227:147–152. doi:10.1016/0014-5793(88)80886-X

    Article  CAS  Google Scholar 

  • Ono T, Inoue Y (1989) Removal of Ca by pH 3.0 treatment inhibits S2 to S3 transition in photosynthetic oxygen evolution system. Biochim Biophys Acta 973:443–449. doi:10.1016/S0005-2728(89)80386-X

    Article  CAS  Google Scholar 

  • Ono T, Inoue Y (1990) Abnormal redox reactions in photosynthetic O2-evolving centers in NaCl/EDTA-washed PS II A dark-stable EPR multiline signal and an unknown positive charge accumulator. Biochim Biophys Acta 1020:269–277. doi:10.1016/0005-2728(90)90157-Y

    Article  CAS  Google Scholar 

  • Ono T, Zimmermann JL, Inoue Y, Rutherford AW (1986) EPR evidence for a modified S-state transition in chloride-depleted photosystem II. Biochim Biophys Acta 851:193–201. doi:10.1016/0005-2728(86)90125-8

    Article  CAS  Google Scholar 

  • Ono T, Nakayama H, Gleiter H, Inoue I, Kawamori A (1987) Modification of the properties of S2 state in photosynthetic O2-evolving center by replacement of chloride with other anions. Arch Biochem Biophys 256:618–624. doi:10.1016/0003-9861(87)90619-9

    Article  PubMed  CAS  Google Scholar 

  • Popelková H, Yocum CF (2007) Current status of the role of Cl ion in the oxygen-evolving complex. Photosynth Res 93:111–121. doi:10.1007/s11120-006-9121-5

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Tompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous-equations for assaying chlorophyll-a and chlorophyll-b extracted with 4 different solvents—verification of the concentration of chlorophyll standards by atomic-absorption spectroscopy. Biochim Biophys Acta 975:384–394. doi:10.1016/S0005-2728(89)80347-0

    Article  CAS  Google Scholar 

  • Pospišil P, Dau H (2000) Chlorophyll fluorescence transients of photosystem II membrane particles as a tool for studying photosynthetic oxygen evolution. Photosynth Res 65:41–52. doi:10.1023/A:1006469809812

    Article  PubMed  Google Scholar 

  • Preston C, Seibert M (1991) The carboxyl modifier 1-ethyl-3-[3-(dimethylamino) propyl]carbodiimide (EDC) inhibits half of the high-affinity manganese-binding site in photosystem II membrane fragments. Biochemistry 30:9615–9624. doi:10.1021/bi00104a008

    Article  PubMed  CAS  Google Scholar 

  • Rashid A, Homann PH (1992) Properties of iodide-activated photosynthetic water-oxidizing complexes. Biochim Biophys Acta 1101:303–310. doi:10.1016/0005-2728(92)90086-H

    Article  CAS  Google Scholar 

  • Sandusky PO, Yocum CF (1983) The mechanism of amine inhibition of the photosynthetic oxygen evolving complex. Amines displace functional chloride from a ligand site on manganese. FEBS Lett 162:339–343. doi:10.1016/0014-5793(83)80784-4

    Article  CAS  Google Scholar 

  • Sandusky PO, Yocum CF (1984) The chloride requirement for photosynthetic oxygen evolution. Analysis of the effects of chloride and other anions on amine inhibition of the oxygen-evolving complex. Biochim Biophys Acta 766:603–611. doi:10.1016/0005-2728(84)90121-X

    Article  CAS  Google Scholar 

  • Seibert M, Lavorel J (1983) Oxygen-evolution patterns from spinach photosystem II preparations. Biochim Biophys Acta 723:160–168. doi:10.1016/0005-2728(83)90115-9

    Article  CAS  Google Scholar 

  • Semin BK, Seibert M (2005) Iron bound to the high-affinity Mn-binding site of the oxygen-evolving complex shifts the pK of a component controlling electron transport via YZ. Biochemistry 43:6772–6782. doi:10.1021/bi036047p

    Article  CAS  Google Scholar 

  • Semin BK, Seibert M (2006) Flash-induced blocking of the high-affinity manganese-binding site in photosystem II by iron cations: dependence on the dark interval between flashes and binary oscillations of fluorescence yield. J Phys Chem B 110:25532–25542. doi:10.1021/jp0652796

    Article  PubMed  CAS  Google Scholar 

  • Semin BK, Ghirardi ML, Seibert M (2002) Blocking of electron donation by Mn(II) to Y Z following incubation of Mn-depleted photosystem II membranes with Fe(II) in the light. Biochemistry 41:5854–5864. doi:10.1021/bi0200054

    Article  PubMed  CAS  Google Scholar 

  • Semin BK, Davletshina LN, Bulychev AA, Ivanov II, Seibert M, Rubin AB (2007) Effect of calcium chelators on the formation and oxidation of the slowly relaxing reduced plastoquinone pool in calcium-depleted PSII membranes. Investigation of the F0 yield. Biochemistry (Mosc) 72:1205–1215. doi:10.1134/S0006297907110065

    Article  CAS  Google Scholar 

  • Sivaraja M, Tso J, Dismukes GC (1989) A calcium-specific site influences the structure and activity of the manganese cluster responsible for photosynthetic water oxidation. Biochemistry 28:9459–9464. doi:10.1021/bi00450a032

    Article  PubMed  CAS  Google Scholar 

  • Strasser BJ (1997) Donor side capacity of photosystem II probed by chlorophyll a fluorescence transients. Photosynth Res 52:147–155. doi:10.1023/A:1005896029778

    Article  CAS  Google Scholar 

  • Styring S, Rutherford AW (1988) Deactivation kinetics and temperature dependence of the S-state transitions in the oxygen-evolving system of photosystem II measured by EPR spectroscopy. Biochim Biophys Acta 933:378–387. doi:10.1016/0005-2728(88)90046-1

    Article  CAS  Google Scholar 

  • van Vliet P, Rutherford AW (1996) Properties of the chloride-depleted oxygen-evolving complex of photosystem II studied by electron paramagnetic resonance. Biochemistry 35:1829–1839. doi:10.1021/bi9514471

    Article  PubMed  Google Scholar 

  • van Vliet P, Boussac A, Rutherford AW (1994) Chloride-depletion effects in the calcium-deficient oxygen-evolving complex of photosystem II. Biochemistry 33:12998–13004. doi:10.1021/bi00248a008

    Article  PubMed  Google Scholar 

  • Vrettos JS, Limburg J, Brudvig GW (2001) Mechanism of photosynthetic water oxidation: combining biophysical studies of photosystem II with inorganic model chemistry. Biochim Biophys Acta 1503:229–245. doi:10.1016/S0005-2728(00)00214-0

    Article  PubMed  CAS  Google Scholar 

  • Wincencjusz H, van Gorkom HJ, Yocum CF (1997) The photosynthetic oxygen evolving complex requires chloride for its redox state S2 → S3 and S3 → S0 transitions but not for S0 → S1 or S1 → S2 transitions. Biochemistry 36:3663–3670. doi:10.1021/bi9626719

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Huggins BJ, Jursinic PA (1985) Uncoupling of detectable O2 evolution from the apparent S-state transitions in photosystem II by lauroylcholine chloride: possible implications in the photosynthetic water-splitting mechanism. Biochim Biophys Acta 809:125–136. doi:10.1016/0005-2728(85)90175-6

    Article  CAS  Google Scholar 

  • Yano J, Kern J, Sauer K, Latimer J, Pushkar Y, Biesiadka J et al (2006) Where water is oxidized to dioxygen: structure of the photosynthetic Mn4Ca cluster. Science 314:821–825. doi:10.1126/science.1128186

    Article  PubMed  CAS  Google Scholar 

  • Yocum CF (1991) Calcium activation photosynthetic of water oxidation. Biochim Biophys Acta 105:1–15

    Google Scholar 

Download references

Acknowledgments

This study was supported by the Russian Foundation for Basic Research, Project Numbers 08-04-00490a (BS, LD) and 08-04-00354 (AR), and by the Office of Basic Energy Sciences, Office of Science, U.S. Department of Energy (MS). BKS appreciates support from the Division of Energy Biosciences, Office of Science, U.S. Department of Energy while at NREL. We thank Professor R. Debus for many helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael Seibert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Semin, B.K., Davletshina, L.N., Ivanov, I.I. et al. Decoupling of the processes of molecular oxygen synthesis and electron transport in Ca2+-depleted PSII membranes. Photosynth Res 98, 235–249 (2008). https://doi.org/10.1007/s11120-008-9347-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-008-9347-5

Keywords

Navigation